

 Department of CSE Page 1 of 45

UNIT–III

MorePowerful LR parser (LR1,LALR) Using Armigers Grammars Equal Recovery in Lr

parserSyntaxDirectedTransactionsDefinition,EvolutionorderofSDTSApplicationofSDTS.SyntaxDirecte

dTranslationSchemes.

UNIT-3

CANONICALLRPARSING

CLR refers to canonical lookahead. CLR parsing use the canonical collection of LR (1) items to

buildthe CLR (1) parsing table. CLR (1) parsing table produces the more number of states as compare

to theSLR (1)parsing.

IntheCLR(1),weplace

thereducenodeonlyinthelookaheadsymbols.Varioussteps involved in the

CLR (1)Parsing:

1) Forthegiveninput stringwriteacontextfreegrammar

2) Checktheambiguityofthegrammar

3) AddAugmentproductionin thegivengrammar

4) CreateCanonicalcollection ofLR (0)items

5) Drawadataflowdiagram(DFA)

6) Constructa CLR(1)parsingtable

In the SLR method we were working with LR(0)) items. In CLR parsing we will be using

LR(1)items. LR(k) item is defined to be an item using lookaheads of length k. So ,the LR(1) item

iscomprised of two parts : the LR(0) item and the lookahead associated with the item. The look

aheadis used to determine that where we place the final item. The look ahead always add $ symbol

for theargumentproduction.

LR(1)parsersaremorepowerfulparser.
forLR(1)items we modify theClosureandGOTOfunction.

ClosureOperation

Closure(I)

repeat

for(eachitem[A->?.B?,a]inI)for (each

production B -> ? in

G’)for(eachterminalbinFIRST(?a))

add [B -> .? , b] to set

I;untilnomoreitemsareaddedtoI;ret

urn I;

 Department of CSE Page 2 of 45

GotoOperation

Goto(I,X)

InitialiseJtobethe empty set;

for(each item A ->?.X?, a] inI)

AdditemA->?X.?,a] toseJ;/*movethedotone

step*/returnClosure(J); /* apply closureto theset */

LR(1)items

Voiditems(G’)

Initialise C to { closure ({[S’ -> .S,

$]})};Repeat

For(eachset ofitemsIinC)

For(eachgrammar symbolX)

if(GOTO(I, X) is not empty and not in

C)AddGOTO(I,X)to C;

Untilnonew setof itemsareaddedto C;

ALGORITHMFORCONSTRUCTIONOFTHECANONICALLRPARSINGTA

BLE

Input:grammarG'

Output:canonicalLR parsingtablefunctions actionandgoto

1. ConstructC={I0,I1, ...,In}thecollectionofsets ofLR(1)items
forG'.Stateiisconstructed fromIi.

2. if[A-> a.ab,b>]isinIi and goto(Ii,a)=Ij,thensetaction[i, a]to"shiftj".Hereamust
beaterminal.

3. if[A-> a.,a] isinIi,thensetaction[i, a]to"reduce A-
>a"forallainFOLLOW(A). Here Amay not beS'.

4. if[S'->S.]is inIi,thenset action[i,$]to"accept"

5. Ifanyconflictingactionsaregeneratedbytheserules,thegrammarisnotLR(1)a
nd the algorithmfails to produceaparser.

6. The goto transitions for state i are constructed for all nonterminals A using
therule:If goto(Ii, A)= Ij, then goto[i,A] =j.

7. Allentriesnot definedbyrules2and 3aremade"error".

8. Theinital stateoftheparseris theoneconstructed from theset

ofitemscontaining[S' ->.S, $].

 Department of CSE Page 3 of 45

Example,

Considerthefollowinggrammar,

S‟-

>SS-

>CCC

-

>cCC-

>d

Setsof LR(1)items

I0: S‟-

>.S,$S-

>.CC,$

C-

>.Cc,c/dC-

>.d,c/d

I1: S‟->S.,$

I2: S->C.C,$

C->.Cc,$

C->.d,$

I3:C->c.C,c/dC-

>.Cc,c/dC-

>.d,c/d

I4: C->d.,c/d

I5: S->CC.,$

I6: C->c.C,$

C->.cC,$

C->.d,$

I7: C->d.,$

I8: C->cC.,c/d

I9: C->cC.,$

CSEDept.,Sir CRRCOE.

Department of CSE Page 4 of 45

Hereis whatthecorresponding DFAlooks like

Department of CSE Page 5 of 45

.LALRPARSER:

We begin with two observations. First, some of the states generated for LR(1)

parsinghavethesamesetofcore(orfirst)componentsanddifferonlyintheirsecondcomponent,thelo

okaheadsymbol.Ourintuitionisthatweshouldbeabletomergethesestatesandreduce the number

of states we have, getting close to the number of states that would begenerated for LR(0)

parsing. This observation suggests a hybrid approach: We can constructthe canonical LR(1)

sets of items and then look for sets of items having the same core. Wemerge these sets with

common cores into one set of items. The merging of states withcommon cores can never

produce a shift/reduce conflict that was not present in one of theoriginal states because shift

actions depend only on the core, not the lookahead. But it ispossiblefor themerger to

produceareduce/reduceconflict.

Our second observation is that we are really only interested in the lookahead

symbolin places where there is a problem. So our next thought is to take the LR(0) set of

items andadd lookaheads only where they are needed. This leads to a more efficient, but

much morecomplicatedmethod.

ALGORITHMFOREASY CONSTRUCTIONOF ANLALR TABLE

Input:G'

Output:LALRparsingtablefunctionswithaction

andgotoforG'.Method:

1. Construct C={I0,I1 ,...,In}thecollectionofsetsof LR(1)itemsforG'.

2. Foreachcorepresentamong theset ofLR(1)items,find allsetshaving

thatcoreandreplacethesesets bythe union.

3. Let C' = {J0, J1 , ..., Jm} be the resulting sets of LR(1) items. The parsing

actionsfor state i are constructed from Ji in the same manner as in the construction

of thecanonicalLR parsing table.

4. Ifthereisaconflict,the grammar isnotLALR(1)andthealgorithm fails.

5. The goto table is constructed as follows: If J is the union of one or more sets

ofLR(1) items, that is, J = I0U I1 U ... U Ik, then the cores of goto(I0, X),

goto(I1,X), ..., goto(Ik, X) are the same, since I0, I1 , ..., Ik all have the same core.

Let Kbethe union ofallsets ofitems having thesame coreasgoto(I1,X).

Department of CSE Page 6 of 45

6. Thengoto(J,X)= K.

Considerthe aboveexample,

I3&I6canbereplacedbytheirunion I36:C->c.C,c/d/$

C-

>.Cc,C/D/$C

->.d,c/d/$

I47:C-

>d.,c/d/$I89:C-

>Cc.,c/d/$

ParsingTable

state c d $ S C

0 S36 S47 1 2

1 Accept

2 S36 S47 5

36 S36 S47 89

47 R3 R3

5 R1

89 R2 R2 R2

HANDLINGERRORS

The LALR parser may continue to do reductions after the LR parser would have spotted

anerror, but the LALR parser will never do a shift after the point the LR parser would

havediscoveredtheerror andwill eventually find theerror.

DANGLINGELSE

The dangling else is a problem in computer programming in which an optional else clause

inan If–then(–else) statement results in nested conditionals being ambiguous. Formally,

thecontext-free grammar of the language is ambiguous, meaning there is more than one

correctparsetree.

-45 -

Department of CSE Page 7 of 45

Inmany programminglanguagesonemay writeconditionallyexecutedcodeintwoforms:theif-

then form,andtheif-then-elseform– the elseclauseis optional:

Considerthegrammar:

S ::=E $

E ::=E +E

|E * E

|(E)

|id

|num

andfour ofits LALR(1) states:

I0:S ::=.E$?

E::=. E+E +*$ I1:S ::=E. $?I2:E ::= E* .E +*$

E::=. E* E +*$ E::=E . +E +*$ E::=.E+E +*$

E::=. (E) +*$ E::=E . *E +*$ E ::=. E * E +*$

E ::=. id+*$ E::=.(E) +*$

E ::=. num +*$ I3:E ::=E*E . +*$ E::=.id +*$

 E ::=E . +E +*$ E::=.num +*$

-

Department of CSE Page 8 of 45

E::=E .* E +*$

Here we have a shift-reduce error. Consider the first two items inI3.If we have a*b+c andwe

parsed a*b, do we reduce using E ::= E * E or do we shift more symbols? In the formercase

we get a parse tree (a*b)+c; in the latter case we get a*(b+c). To resolve this conflict, wecan

specify that * has higher precedence than +. The precedence of a grammar production isequal

to the precedence of the rightmost token at the rhs of the production. For example,

theprecedence of the production E ::= E * E is equal to the precedence of the operator *,

theprecedence of the production E ::= (E) is equal to the precedence of the token), and

theprecedence of the production E ::= if E then E else E is equal to the precedence of the

tokenelse. The idea is that if the look ahead has higher precedence than the production

currentlyused,weshift.Forexample,ifweareparsingE+EusingtheproductionruleE::=E+Eand the

look ahead is *, we shift *. If the look ahead has the same precedence as that of thecurrent

production and is left associative, we reduce, otherwise we shift. The above grammaris valid

if we define the precedence and associativity of all the operators. Thus, it is veryimportant

when you write a parser using CUP or any other LALR(1) parser generator

tospecifyassociativitiesandprecedence‟sformosttokens(especiallyforthoseusedasoperators).

Note: you can explicitly define the precedence of a rule in CUP using the %precdirective:

E::=MINUS E%precUMINUS

where UMINUS is a pseudo-token that has higher precedence than TIMES, MINUS etc,

sothat-1*2 is equal to (-1)*2, not to-(1*2).

AnotherthingwecandowhenspecifyinganLALR(1)grammarforaparsergenerator is error

recovery. All the entries in the ACTION and GOTO tables that have

nocontentcorrespondtosyntaxerrors.Thesimplestthingtodoincaseoferroristoreportitandstopthe

parsing.Butwe wouldlike to continue parsingfinding more errors.Thisiscallederror recovery.

Consider thegrammar:

S ::=L =E ;

|{ SL }

;|error ;

SL ::= S ;

|SLS;

The special token error indicates to the parser what to do in case of invalid syntax for S

(aninvalid statement). In this case, it reads all the tokens from the input stream until it finds

thefirst semicolon. The way the parser handles this is to first push an error state in the stack.

Incase of an error, the parser pops out elements from the stack until it finds an error state

whereit can proceed. Then it discards tokens from the input until a restart ispossible.

Insertingerror handling productions in the proper places in a grammar to do good error

recovery isconsideredvery hard.

LRERROR RECOVERY

An LR parser will detect an error when it consults the parsing action table and find

ablank or error entry. Errors are never detected by consulting the goto table. An LR parser

willdetectanerrorassoonasthereisnovalidcontinuationfortheportionoftheinputthusfar

Department of CSE Page 9 of 45

scanned. A canonical LR parser will not make even a single reduction before announcing

theerror.SLRandLALRparsersmaymakeseveralreductionsbeforedetectinganerror,buttheywill

never shift an erroneous inputsymbol onto thestack.

PANIC-MODEERRORRECOVERY

We can implementpanic-modeerror recovery by scanning down the stack until astate s

with a goto on a particular nonterminal A is found. Zero or more input symbols

arethendiscardeduntilasymbolaisfoundthatcanlegitimatelyfollowA.Theparserthenstacks the

state GOTO(s, A) and resumes normal parsing. The situation might exist wherethere is more

than one choice for the nonterminal A. Normally these would be

nonterminalsrepresentingmajorprogrampieces,e.g.anexpression,astatement,orablock.Forexam

ple,if A is the nonterminal stmt, a might be semicolon or }, which marks the end of a

statementsequence. This method of error recovery attempts to eliminate the phrase containing

thesyntactic error. The parser determines that a string derivable from A contains an error.

Part ofthat string has already been processed, and the result of this processing is a sequence

of stateson top of the stack. The remainder of the string is still in the input, and the parser

attempts

toskipovertheremainderofthisstringbylookingforasymbolontheinputthatcanlegitimately follow

A. By removing states from the stack, skipping over the input,andpushing GOTO(s, A) on

the stack, the parser pretends that if has found an instance of A andresumesnormal parsing.

PHRASE-LEVELRECOVERY

Phrase-level recovery is implemented by examining each error entry in the LR

actiontable and deciding on the basis of language usage the most likely programmer error

thatwould give rise to that error. An appropriate recovery procedure can then be

constructed;presumably the top of the stack and/or first input symbol would be modified in a

way deemedappropriate for each error entry. In designing specific error-handling routines for

an LRparser, we can fill in each blank entry in the action field with a pointer to an error

routine thatwilltakethe appropriateaction selected by thecompilerdesigner.

Theactionsmayincludeinsertionordeletionofsymbolsfromthestackortheinputor both, or

alteration and transposition of input symbols. We must make our choices so thatthe LR parser

will not get into an infinite loop. A safe strategy will assure that at least oneinput symbol will

be removed or shifted eventually, or that the stack will eventually shrink ifthe end of the

input has been reached. Popping a stack state that covers a non terminal shouldbe avoided,

because this modification eliminates from the stack a construct that has

alreadybeensuccessfully parsed.

SyntaxDirectedTranslations

Weassociateinformationwithalanguageconstruct byattaching attributes tothegrammar
symbol(s)representingtheconstruct, A syntax-directed definition specifies the values of attributes by

associatingsemantic rules with the grammar productions. For example, an infix-to-postfix translator

might have aproductionandrule

Department of CSE Page 10 of 45

This production has two nonterminals, E and T; the subscript in E1distinguishes the occurrence of E

inthe production body from the occurrence of E as the head. Both E and T have a string-valued

attributecode. The semantic rule specifies that the string E.code is formed by concatenating Ei.code,

T.code, andthecharacter'+'. Whiletherulemakesitexplicit thatthetranslationofE isbuiltup

fromthetranslationsofE1, T,and '+',it maybeinefficientto implementthetranslationdirectlybymanipulating

strings.

asyntax-

directedtranslationschemeembedsprogramfragmentscalledsemanticactionswithinproductionbod

ies

Therearetwonotationsforattachingsemantic rules:

1. Syntax Directed Definitions. High-level specification hiding many

implementationdetails(also called AttributeGrammars).

2. Translation Schemes. More implementation oriented: Indicate the order in

whichsemanticrules areto beevaluated.

SyntaxDirectedDefinitions

SyntaxDirectedDefinitionsareageneralizationof context-freegrammars inwhich:

1. Grammarsymbolshavean associatedsetofAttributes;

2. Productions are associated with Semantic Rules for computing the values of
attributesSuch formalism generates Annotated Parse-Trees where each node of the
tree is arecord with a field for each attribute (e.g.,X.a indicates the attribute a of the
grammarsymbol X).

Thevalue ofan attribute of agrammar symbol atagivenparse-treenodeisdefined
byasemantic ruleassociated with theproduction usedat that node.

Wedistinguishbetweentwo kindsofattributes:

1. Synthesized Attributes. They are computed from the values of the attributes of

thechildrennodes.

2. Inherited Attributes. They are computed from the values of the attributes of both

thesiblingsand theparent nodes

Department of CSE Page 11 of 45

SyntaxDirectedDefinitions:AnExample

LetusconsidertheGrammarforarithmeticexpressions.TheSyntaxDirectedDefinitiona

ssociates to eachnon terminal asynthesized attributecalledval.

SDDofasimpledeskcalculator

S-ATTRIBUTEDDEFINITIONS

Definition. An S-Attributed Definition is a Syntax Directed Definition that

usesonlysynthesized attributes.

• Evaluation Order. Semantic rules in a S-Attributed Definition

canbeevaluatedby abottom-up,orPostOrder,traversal oftheparse-tree.

• Example. The above arithmetic grammar is an example of an S-

AttributedDefinition.Theannotatedparse-treefortheinput3*5+4nis:

Department of CSE Page 12 of 45

L-attributeddefinition

Definition:ASDDitsL-attributed ifeachinheritedattributeofXiinthe RHSofA! X1:

:Xndepends onlyon

1. attributesof X1;X2;: : :;Xi 1 (symbolsto theleft of Xiin the RHS)

2. inheritedattributesofA.

Restrictionsfortranslation schemes:

1. InheritedattributeofXimustbecomputedbyanaction beforeXi.
2. Anactionmustnotrefer to synthesizedattributeofanysymbol totherightofthataction.
3. Synthesized attribute for A can only be computed after all attributes it references

havebeencompleted(usually at end ofRHS).

EvaluationorderofSDTS

1 DependencyGraphs

2 OrderingtheEvaluationofAttributes3

S-Attributed Definitions

4L-AttributedDefinitions

"Dependencygraphs"areausefultoolfordetermininganevaluationorderfortheattributeinstance

s in a given parse tree. While an annotated parse tree shows the values of attributes,
adependencygraph helps us determinehow thosevalues can becomputed.

1DependencyGraphs

A dependency graph depicts the flow of information among the attribute in-stances in
aparticular parse tree; an edge from one attribute instance to an-other means that the value of the first
isneededtocomputethesecond.Edgesexpress constraintsimpliedby thesemanticrules.Inmoredetail:

Suppose that a semantic rule associated with a production p defines the value of
inheritedattribute B.c in terms of the value of X.a. Then, the dependency graph has an edge from X.a to
B.c. Foreach node N labeled B that corresponds to an occurrence of this B in the body of production p,
create anedge to attribute c at N from the attribute a at the node M that corresponds to this occurrence
of X. NotethatMcould be either theparent or asibling ofN.

Since a node N can have several children labeled X, we again assume that subscripts
distinguishamonguses of thesame symbol atdifferent placesin theproduction.

Example:Considerthefollowing productionandrule:

Department of CSE Page 13 of 45

At every node N labeled E, with children corresponding to the body of this production, the

synthesizedattribute val at N iscomputedusingthevaluesof val atthetwochildren,labeled E and T.

Thus,aportion of the dependency graph for every parse tree in which this production is used looks like

Fig. 5.6.As a convention, we shall show the parse tree edges as dotted lines, while the edges of the

dependencygrapharesolid.

2. OrderingtheEvaluationofAttributes

The dependency graph characterizes the possible orders in which we can evalu-ate the
attributesat the various nodes of a parse tree. If the dependency graph has an edge from node M to node
N, thenthe attribute corresponding to M must be evaluated before the attribute of N. Thus, the only
allowableorders of evaluation are those sequences of nodes N1, N2,... ,Nk such that if there is an edge
of thedependency graph from Ni to Nj, then i < j. Such an ordering embeds a directed graph into a
linearorder,and is called atopological sort of thegraph.

Ifthereisanycyclein thegraph, thentherearenotopological sorts;thatis,thereis nowaytoevaluate
the SDD on this parse tree. If there are no cycles, however, then there is always at least
onetopologicalsort

3. S-AttributedDefinitions

AnSDD isS-attributed if every attributeis synthesized.When anSDDisS-attributed, wecanevaluate its
attributes in any bottom-up order of the nodes of the parse tree. It is often especially simpleto evaluate
the attributes by performing a postorder traversal of the parse tree and evaluating theattributesat a
nodeN when the traversalleavesN forthe last time.

S-attributed definitions can be implemented during bottom-up parsing, since a bottom-up
parsecorrespondstoapostordertraversal.Specifically,postordercorrespondsexactlytotheorderinwhichanLR
parser reduces aproduction body to its head.

4L-AttributedDefinitions

The idea behind this class is that, between the attributes associated with a production
body,dependency-graph edges can go from left to right, but not from right to left (hence "L-attributed").
Moreprecisely,eachattributemust beeither

1. Synthesized,or

2. Inherited,butwith the rules limitedas follows.Supposethatthereisaproduction A->X1X2

Xn,andthat thereisan inheritedattributeXi.acomputedbyaruleassociatedwith thisproduction.

Department of CSE Page 14 of 45

Thenthe rule mayuseonly:

InheritedattributesassociatedwiththeheadA.

Either inherited or synthesized attributes associated with the occurrences of symbols X1, X2,... , X(i-

1)locatedto the left ofXi.

Inheritedorsynthesizedattributesassociatedwiththisoccurrenceof Xi

itself,butonlyinsuchawaythatthereareno cycles in adependency graph formed by theattributes of this

X i

ApplicationofSDTS

1ConstructionofSyntaxTrees2

TheStructureofa Type

Themainapplicationistheconstructionofsyntaxtrees.Sincesomecompilersusesyntax treesas an
intermediate representation, a common form of SDD turns its input string into a tree. To completethe
translation to intermediate code, the compiler may then walk the syntax tree, using another set
ofrulesthat areineffect anSDDonthe syntax treeratherthan theparsetree.

1 ConstructionofSyntaxTrees

Each node in a syntax tree represents a construct; the children of the node represent

themeaningfulcomponentsoftheconstruct. Asyntax-treenoderepresentinganexpressionE1+

E2haslabel + and twochildrenrepresenting the subexpressionsE1 and E2

implement the nodes of a syntax tree by objects with a suitable number of fields. Each
objectwillhavean op field thatis thelabel of thenode.

Theobjects willhave additional fieldsas follows:

• If the node is a leaf, an additional field holds the lexical value for the leaf. A constructor function

Leaf(op,val)createsaleafobject.Alternatively,ifnodesareviewedasrecords,thenLeafreturnsapointertoa new

record for aleaf.

• Ifthenodeisaninteriornode,thereareasmanyadditionalfieldsasthenodehaschildreninthesyntax tree. A

constructor function Node takes two or more arguments: Node(op,ci,c2,... ,ck) creates anobjectwith first

field opand k additionalfields for thek childrenc1,... ,.

Example

Figure 5.1 1 shows the construction of a syntax tree for the input a — 4 + c. The nodes of

thesyntax tree are shown as records, with the op field first. Syntax-tree edges are now shown as solid
lines.Theunderlying parsetree, which need not actuallybeconstructed, is shown with dottededges. The

Department of CSE Page 15 of 45

third type of line, shown dashed, represents the values of E.node and T-node; each line points to
theappropriatesyntax-treenode.

.

2 TheStructureof aType
The type int [2][3] can be read as, "array of 2 arrays of 3 integers." The corresponding

typeexpression array(2, array(3, integer)) is represented by the tree in Fig. 5.15. The operator array
takestwoparameters,anumberandatype.Iftypes arerepresentedby trees,then thisoperator
returnsatreenodelabeledarray with two children for anumber andatype.

Nonterminal B generates one of the basic types int and float. T generates a basic type when T derives
BC and C derives e. Otherwise, C generates array components consisting of a sequence of integers,
eachintegersurrounded by brackets.

Department of CSE Page 16 of 45

An annotated parse tree for the input string int [2] [3] is shown in Fig. 5.17. The corresponding

typeexpression in Fig. 5.15 is constructed by passing the type integer from B, down the chain of C's

throughtheinherited attributesb.Thearray typeis synthesized upthe chainof C'sthrough theattributest.

In more detail, at the root for T -» B C, nonterminal C inherits the type from B, using the

inheritedattribute C.b. At the rightmost node for C, the production is C e, so C.t equals C.6.The

semantic rulesfor the production C [num] C1 form C.t by applying the operator array to the operands

num.ua/ andC1.t.

Department of CSE Page 17 of 45

SyntaxDirectedTranslationSchemes.

1Postfix Translation Schemes

2 Parser-Stack Implementation of Postfix

SDT's3SDT's WithActions InsideProductions

4EliminatingLeftRecursion FromSDT's

syntax-directed translation scheme (SDT) is a context-free grammar with program

fragmentsembedded within production bodies. The program fragments are called semantic actions and

can appearat any position within a production body. By convention, we place curly braces around

actions; if bracesare needed as grammar symbols, then we quote them.SDT's are implemented during

parsing, withoutbuildinga parsetree.

Twoimportantclassesof SDD'sare

1. The underlying grammar is LR-parsable, and the SDD is S-

attributed.2.TheunderlyinggrammarisLL-parsable, andtheSDDisL-

attributed.

1PostfixTranslationSchemes

simplest SDD implementation occurs when we can parse the grammar bottom-up and the

SDDis S-attributed. In that case, we can construct an SDT in which each action is placed at the end of

theproduction and is executed along with the reduction of the body to the head of that production.

SDT'swithall actions at therightends ofthe productionbodiesare called postfixSDT's.

Example 5.14 : The postfix SDT in Fig. 5.18 implements the desk calculator SDD of Fig. 5.1, with

onechange: the action for the first production prints a value. The remaining actions are exact

counterparts ofthe semantic rules. Since the underlying grammar is LR, and the SDD is S-attributed,

these actions canbecorrectly performedalong with thereduction steps of theparser.

2Parser-StackImplementationofPostfixSDT's

The attribute(s) of each grammar symbol can be put on the stack in a place where they can
befoundduringthereduction. Thebestplan istoplacetheattributesalongwith thegrammarsymbols
(ortheLR states that represent thesesymbols) in recordson thestack itself.

InFig.5.19,theparserstackcontainsrecordswithafieldforagrammarsymbol(orparserstate)and,belowit,afieldforan

attribute.ThethreegrammarsymbolsXYZ areontopofthestack;perhapsthey

Department of CSE Page 18 of 45

are about to be reduced according to a production like A —> X YZ. Here, we show X.x as the

oneattribute of X, and so on. In general, we can allow for more attributes, either by making the records

largeenough or by putting pointers to records on the stack. With small attributes, it may be simpler to

makethe records large enough, even if some fields go unused some of the time. However, if one or

moreattributes are of unbounded size — say, they are character strings — then it would be better to put

apointer to the attribute's value in the stack record and store the actual value in some larger,

sharedstorageareathat is not part ofthe stack.

3 SDT'sWithActionsInsideProductions

An action may be placed at any position within the body of a production.It is performed

immediatelyafter all symbols to its left are processed. Thus,if we have a production B -» X {a} Y, the

action a isdone after we have recognized X (if X is a terminal) or all the terminals derived from X (if X

is anonterminal).

Moreprecisely,

• If the parse is bottom-up, then we perform action a as soon as this occurrence of X appears on the

topoftheparsing stack.

• If the parse is top-down, we perform a just before we attempt to expand this occurrence of Y (if Y

anonterminal)orcheck for Yon the input (if Yis aterminal).

4 EliminatingLeftRecursion FromSDT's

First, consider the simple case, in which the only thing we care about is the order in which
theactionsin anSDTareperformed.For example,if each actionsimply printsastring,
wecareonlyabouttheorder in whichthestrings areprinted.In this case,the following principlecan guide
us:

Whentransforming thegrammar,treat theactionsas if theywereterminal symbols.

This principle is based on the idea that the grammar transformation preserves the order of the

terminalsin the generated string. The actions are therefore executed in the same order in any left-to-right

parse,top-downorbottom-up.

The"trick" foreliminating leftrecursionis totaketwoproductions

A-> Aa|b

that generate strings consisting of a j3 and any number of en's, and replace them by productions

thatgeneratethe same stringsusing anewnonterminalR (for"remainder")of thefirst production:

A->bR

R—»•aR|e

Department of CSE Page 19 of 45

If(3doesnotbeginwith A,thenAnolongerhasaleft-recursiveproduction.Inregular-definitionterms,withboth

sets of productions, Ais defined by0(a)*.

Example5 .17:ConsiderthefollowingE-productionsfromanSDTfortranslatinginfixexpressionsinto postfix

notation:

E -> Ei+T{print('+');}E -

> T

Ifweapply thestandard transformationtoE,theremainder oftheleft-recursiveproduction isa

 = +T {print('-r'); }

and thebodyoftheotherproductionisT.IfweintroduceRfortheremainderofE,wegetthesetofproductions:

E -->TR

R --> + T { printC-h'); }

RR->e

When the actions of an SDD compute attributes rather than merely printing output, we must be

morecarefulabouthowweeliminateleftrecursionfromagrammar.However,iftheSDDisS-attributed,then we

can always construct an SDT by placing attribute-computing actions at appropriate positions inthenew

productions.

Department of CSE Page 20 of 45

UNIT–III

IntermediatedCode:GenerationVariantsofSyntaxtrees3Addresscode,TypesandDeceleration,Translationof

Expressions,TypeChecking.CantedFlowBackpatching?

INTERMEDIATECODE

Intheanalysis-synthesismodelofacompiler,thefrontendanalyzesasourceprogram and

creates an intermediate representation, from which the back end generates targetcode. This

facilitates retargeting: enables attaching a back end for the new machine to anexistingfront

end.

LogicalStructureofa CompilerFrontEnd

Acompilerfrontendisorganizedasinfigureabove,whereparsing,staticchecking, and

intermediate-code generation are done sequentially; sometimes they can becombined and

folded into parsing. All schemes can be implemented by creating a syntaxtreeand traversing

the tree.

Static checking includes type checking, which ensures that operators are applied to

compatibleoperands.Intheprocessoftranslatingaprogram inagiven sourcelanguageintocodefor

agiventargetmachine,a compilerconstruct a sequenceofintermediate representations

Sequenceofintermediaterepresentations

High-levelrepresentationsareclosetothesourcelanguageandlow-levelrepresentationsareclosetothe target

machine. A low-level representation is suitable for machine-dependent tasks like registerallocationand

instruction selection.

JSVGKrishna,AssociateProfessor.

 Department of CSE Page 21 of 45

VariantsofSyntax Trees

1 DirectedAcyclicGraphsforExpressions

2 TheValue-NumberMethod forConstructing DAG's

1.DirectedAcyclicGraphsforExpressions

Like the syntax tree for an expression, a DAG has leaves corresponding to

atomicoperands and interior codes corresponding to operators. The difference is that a node N in a

DAG hasmore than one parent if N represents a com-mon subexpression; in a syntax tree, the tree for

thecommon subexpression would be replicated as many times as the subexpression appears in the

originalexpression.

Example:Considerexpression

a +a*(b-c) + (b- c)*d

2TheValue-NumberMethodforConstructingDAG's

The nodes of a syntax tree or DAG are stored in an array of records, as suggested by Fig.

6.6.Each row of the array represents one record, and therefore one node. In each record, the first field is

anoperation code, indicating the label of the node. In Fig. 6.6(b), leaves have one additional field,

whichholds the lexical value (either a symbol-table pointer or a constant, in this case), and interior

nodes havetwoadditional fields indicating the left andright children.

 Department of CSE Page 22 of 45

Inthisarray,werefertonodesbygivingtheintegerindex oftherecordfor thatnodewithinthearray.

This integer iscalled the value numberfor thenode.

Algorithm:Thevalue-numbermethod forconstructingthe nodesof

aDAG.INPUT: Label op, node /, and noder.

OUTPUT: Thevalue numberof anodein thearray with signature(op,l,r).

METHOD : Search the array for a node M with label op, left child I, and right child r. If there is such

anode,returnthevaluenumberofM.Ifnot,createinthearrayanewnodeNwithlabelop,

leftchildI,andrightchildr,andreturn its valuenumber.

Three-AddressCode

1 Addresses and

Instructions2Quadruples

3Triples

In three-address code, there is at most one operator on the right side of an instruction; that is,

nobuilt-up arithmetic expressions are permitted. Thus a source-language expression like x+y*z might

betranslatedinto the sequenceof three-address instructions

wheretiandt2arecompiler-generatedtemporary names.

1AddressesandInstructions

Anaddresscanbeoneof thefollowing:

• A name. Source-program names to appear as addresses in three-address code. In

animplementation, a source name is replaced by a pointer to its symbol-table

entry,whereall information about the name is kept.

• Aconstant.Acompilermustdealwithmanydifferenttypesof constantsandvariables.

• A compiler-generated temporary. Useful in optimizing com-pilers, to create a distinct name

eachtime a temporary is needed. These temporaries can be combined, if possible, when registers

areallocatedto variables.

commonthree-addressinstruction

1. AssignmentStatement: x=yopz andx=opy

Here,x, yandzaretheoperands.oprepresentstheoperator.

2. CopyStatement: x=y

3. ConditionalJump: IfxrelopygotoX

 Department of CSE Page 23 of 45

Ifthe condition“x relop y”getssatisfied, then-

ThecontrolissentdirectlytothelocationspecifiedbylabelX.Allthe

statements in between areskipped.

Ifthecondition“x relopy”fails,then-

Thecontrolis notsentto thelocationspecified bylabelX.

Thenext statement appearing intheusual sequenceis executed.

4. Unconditional Jump-gotoX

Onexecutingthestatement,ThecontrolissentdirectlytothelocationspecifiedbylabelX.

Allthestatementsin betweenareskipped.

5. Procedure Call-paramxcallpreturny

Here,pisafunctionwhichtakes xasaparameterandreturnsy.

Foraprocedurecallp(x1, …, xn)

paramx1

…

paramxn

callp, n

6. Indexedcopyinstructions:x=y[i]and x[i]=y

Left: sets x to the value in the location i memory units beyond

yRight:setsthecontentsofthelocationimemoryunitsbeyondxtoy

7. Addressandpointerinstructions:

x=&y setsthevalue of xto be thelocation(address) ofy.

x = *y, presumably y is a pointer or temporary whose value is

alocation.Thevalueofxissettothecontentsofthatlocation.

*x=y setsthevalue of theobject pointed toby x to thevalue ofy.

DataStructure

Threeaddresscodeisrepresentedasrecordstructurewithfieldsforoperatorandoperands.Thesere

cordscanbestoredasarrayorlinkedlist.Mostcommonimplementationsofthreeaddresscodeare

Quadruples,Triples andIndirecttriples.

2. Quadruples

Quadruples consists of four fields in the record structure. One field to store operator op,

twofieldsto storeoperands or argumentsarg1and arg2 andonefield tostore result res.

res = arg1 op

arg2Example:a =b +c

bisrepresented asarg1, cisrepresentedasarg2, +as opandaasres.

 Department of CSE Page 24 of 45

Unary operators like „-„do not use agr2. Operators like param do not use agr2 nor result.

Forconditional and unconditional statements res is label. Arg1, arg2 and res are pointers

tosymboltable orliteral table for thenames.

Example:a =-b *d+c +(-b)* d

Three address code for the above statement is as

followst1 =-b

t2 = t1 *

dt3 = t2 +

ct4 =-b

t5 = t4 * d

t6 = t3 +

t5a=t6

Quadruplesfortheabove exampleis asfollows

 Department of CSE Page 25 of 45

3TRIPLES

Triples uses only three fields in the record structure. One field for operator, two fields

foroperands named as arg1 and arg2. Value of temporary variable can be accessed by

thepositionofthe statement thecomputes itand not by location as inquadruples.

Example:a =-b *d+c +(-b)* d

Triplesforthe aboveexampleis as follows

Arg1andarg2maybepointerstosymboltableforprogramvariablesorliteraltableforconst

ant or pointers into triplestructureforintermediate results.

Example:Triples forstatement x[i] =y which generatestwo recordsis as follows

 Department of CSE Page 26 of 45

Triplesforstatementx=y[i]whichgeneratestworecordsisasfollows

Triplesarealternative waysforrepresentingsyntaxtreeorDirectedacyclic

graphforprogram defined names.

IndirectTriples

Indirecttriplesareusedtoachieveindirectionin listingofpointers.Thatis,itusespointerstotriples

than listing of triples themselves.

Example:a =-b *d+c +(-b)* d

 Department of CSE Page 27 of 45

TypesandDeclarations

1 TypeExpressions

2 TypeEquivalence

3 Declarations

4 StorageLayoutforLocalNames

1TypeExpressions

Types have structure, which we shall represent using type expressions: a type expression is either

abasictypeoris formed byapplying an operatorcalled a typeconstructortoatypeexpression.

Definition

 Abasictypeisatypeexpression.Typicalbasictypesforalanguageincludeboolean,char,integer,float,a

nd void;the latterdenotes "theabsenceofavalue."

 Atypename isatypeexpression.

 Atypeexpressioncanbe formed byapplying the arraytypeconstructortoanumberandatype

 expression.

 Arecordisadatastructurewithnamedfields.Atypeexpressioncanbeformedbyapplyingtherecord type

constructor to the field names andtheirtypes.

 If s and t are type expressions, then their Cartesian product s x t is a type expression.
Productsare introduced for completeness; they can be used to represent a list or tuple of types
(e.g., forfunctionparameters).

 Typeexpressions may containvariables whosevaluesaretypeexpressions

2TypeEquivalence

Many type-checking rules have the form, "if two type expressions are equal then return a

certaintype else error." Potential ambiguities arise when names are given to type expressions. The key

issue iswhether a name in a type expression stands for itself or whether it is an abbreviation for another

typeexpression.

Since type names denote type expressions, they can set up implicit cycles; see the box on

"TypeNames and Recursive Types." If edges to type names are redirected to the type expressions

denoted bythenames,then theresulting graph can havecycles dueto recursivetypes.

When type expressions are represented by graphs, two types are structurally equivalent if and only

ifoneof thefollowing conditions is true:

Theyarethe samebasic type.

They are formed by applying the same constructor to structurally equivalent

types.Oneis a typename that denotes the other.

Iftypenamesaretreatedasstandingforthemselves,thenthefirsttwoconditionsintheabovedefinitionlead to

nameequivalence of typeexpressions.

Name-equivalent expressions are assigned thesame value number,. Structural equivalence can

betestedusing theunification algorithm .

 Department of CSE Page 28 of 45

3. Declarations

Understand types and declarations using a simplified grammar that declares just one name at a

time;Thegrammar is

The fragment of the above grammar that deals with basic and array types.Consider storage layout

aswellastypes.Nonterminal D generatesasequenceofdeclarations.Nonterminal T generatesbasic,array, or

record types. Nonterminal B generates one of the basic types int and float. Nonterminal C,

for"component," generates strings of zero or more integers, each integer surrounded by brackets. An

arraytype consists of a basic type specified by B, followed by array components specified by

nonterminal C.A record type (the second production for T) is a sequence of declarations for the fields of

the record, allsurroundedby curly braces.

4. StorageLayoutfor LocalNames

From the type of a name, we can determine the amount of storage that will be needed for

thename at run time. At compile time, we can use these amounts to assign each name a relative

address.The type and relative address are saved in the symbol-table entry for the name. Data of varying

length,such as strings, or data whose size cannot be determined until run time, such as dynamic arrays,

ishandledby reserving aknown fixed amount of storagefor apointer to thedata.

AddressAlignment

The storage layout for data objects is strongly influenced by the address-ing constraints of the

targetmachine. For example, instructions to add integers may expect integers to be aligned, that is,

placed atcertain positions in memory such as an address divisible by 4. Although an array of ten

characters needsonly enough bytes to hold ten characters, a compiler may therefore allocate 12 bytes—

the nextmultiple of 4 — leaving 2 bytes unused. Space left unused due to alignment considerations is

referred toas padding. When space is at a premium, a compiler may pack data so that no padding is left;

additionalinstructions may then need to be executed at run time to position packed data so that it can be

operatedonas if it wereproperlyaligned.

Suppose that storage comes in blocks of contiguous bytes, where a byte is the smallest unit

ofaddressable memory. The width of a type is the number of storage units needed for objects of that

type.A basic type, such as a character, integer, or float, requires an integral number of bytes. For easy

access,storagefor aggregatessuch as arraysandclasses isallocated in onecontiguous block ofbytes.

The translation scheme (SDT) computes types and their widths for basic and array types; The

SDTuses synthesized attributes type and width for each nonterminal and two variables t and w to pass

typeand width information from a B node in a parse tree to the node for the production C —> e. In a

syntax-directeddefinition, t and w would beinherited attributes forC.

 Department of CSE Page 29 of 45

The body of the T-production consists of nonterminal B, an action, and nonterminal C,

whichappears on the next line. The action between B and C sets t to B.type and w to B. width. If B —>•

intthen B.type is set to integer and B.width is set to 4, the width of an integer. Similarly, if B -+ float

thenB.typeis float and B.width is 8, the width of afloat.

The productions for C determine whether T generates a basic type or an array type. If C —>•

e,then t becomes C.type and w becomes C. width. Otherwise, C specifies an array component. The

actionfor C —> [n u m] C1 forms C.type by applying the type constructor array to the operands

num.valueand C1.type.

The width of an array is obtained by multiplying the width of an element by the number

ofelements in the array. If addresses of consecutive integers differ by 4, then address calculations for

anarrayofintegerswillincludemultiplicationsby4.Suchmultiplicationsprovideopportunitiesforoptimization

,so it is helpful for thefront endto makethem explicit.

ExampleThe parse tree for the type i n t [2] [3] is shown by dotted lines in Fig. 6.16. The solid

linesshow how the type and width are passed from B, down the chain of C's through variables t and w,

andthen back up the chain as synthesized attributes type and width. The variables t and w are assigned

thevalues of B.type and B.width, respectively, before the subtree with the C nodes is examined. The

valuesof t and w are used at the node for C —> e to start the evaluation of the synthesized attributes up

thechainof C nodes.

 Department of CSE Page 30 of 45

TranslationsofExpressions

1OperationsWithinExpressions2

Incremental Translation

3 AddressingArrayElements

4 TranslationofArrayReferences

1OperationsWithinExpressions

The syntax-directed definition builds up the three-address code for an assignment statement S

usingattribute code for S and attributes addr and code for anexpression E. Attributes S.code and

E.codedenote the three-address code for S and E, respectively. Attribute E.addr denotes the address

that willhold thevalue ofE.

 Department of CSE Page 31 of 45

Example The syntax-directed definition in Fig. 6.19 translates the assignment

statementa=b+-c;intotheTAC

2IncrementalTranslation

Code attributes can be long strings, so they are generated incrementally In the
incrementalapproach, gen not only constructs a three-address instruction, it appends the instruction to
the sequenceof instructions generated so far. The sequence may either be retained in memory for further
processing,or it may be output incrementally.attribute addr represents the address of a node rather than a
variable orconstant.

3.AddressingArrayElements

Elements of arrays can be accessed quickly if the elements are stored in a block of
consecutivelocation.Arraycan beonedimensional ortwo dimensional.

Foronedimensionalarray:

A:array[low..high]oftheithelementsisat:

base+(i-low)*width=i*width +(base-low*width)

Multi-dimensionalarrays:

Rowmajororcolumnmajorforms

oRow major:a[1,1], a[1,2],a[1,3], a[2,1],a[2,2], a[2,3]

oColumnmajor:a[1,1],a[2,1],a[1,2],a[2,2],a[1, 3],a[2,3]

o Inrowmajor form,theaddressofa[i1, i2]is

o Base+((i1-low1)*(high2-low2+1)+i2-low2)*width

 Department of CSE Page 32 of 45

4TranslationofArrayReferences

Lgenerate anarraynamefollowedbyasequenceofindexexpressions:

Calculate addresses based on widths, using the formularather than on numbers of elements.

Thetranslation scheme generates three-address code for expressions with array references. It consists of

theproductionsand semanticactions together with productionsinvolving nonterminal

.

 Department of CSE Page 33 of 45

TypeChecking

1RulesforTypeChecking2

TypeConversions

3 Overloadingof FunctionsandOperators

4 TypeInferenceandPolymorphicFunctions5

An Algorithm forUnification

Typecheckingacompiler needstoassignatype
expressiontoeachcomponentofthesourceprogram. The compiler must then determine that these type
expressions conform to a collection oflogicalrules that is calledthetypesystemforthe sourcelanguage.

1 Rules forTypeChecking

Type checking can take on two forms: synthesis and inference. Type synthesis builds up the

typeof an expression from the types of its subexpressions. It requires names to be declared before they

areused. The type of E1 +E2 is defined in termsof the types of E1 and E2 • A typical rule for

typesynthesishas the form

Typeinferencedeterminesthetypeofalanguageconstructfromthewayitisused.Rulefortypeinferencehas theform

2 TypeConversions

integersareconvertedtofloatswhennecessary,usingaunaryoperator(float).Forexample,theinteger2 is

converted to a floatin thecodefortheexpression2*3.14:

Type conversion rules vary from language to language. The rules for Java in Fig. 6.25
distinguishbetween widening conversions, which are intended to preserve information, and narrowing
conversions,whichcan lose information.
Conversionfromonetypetoanotherissaidtobeimplicit ifitisdoneautomaticallybythecompiler.Implicittype

conversions, also calledcoercions,

 Department of CSE Page 34 of 45

3 OverloadingofFunctionsandOperators

An overloaded symbol has different meanings depending on its context. The + operator in
Javadenoteseither string concatenation oraddition

Type-synthesisruleforoverloaded functions:

4 TypeInferenceandPolymorphicFunctions

TypeinferenceisusefulforalanguagelikeML,whichisstronglytyped,butdoesnotrequirenamesto

bedeclared beforetheyareused.Typeinferenceensuresthat namesareusedconsistently.

Theterm"polymorphic"referstoanycodefragmentthatcanbeexecutedwithargumentsofdifferenttypes.

Thetypeoflengthcanbedescribedas,"foranytypea,lengthmapsalistofelementsoftypeatoaninteger."

The program fragment defines function length with one parameter x. The body of the function

consistsofaconditionalexpression.Thepredefinedfunction null

testswhetheralistisempty,andthepredefinedfunctiontl (shortfor "tail")returns the remainder ofalistafter

thefirst elementis removed.

 Department of CSE Page 35 of 45

5 AnAlgorithm forUnification

Unification is the problem of determining whether two expressions s and t can be made

identicalby substituting expressions for the variables in s and t. Testing equality of expressions is a

special caseof unification; if s and t have constants but no variables, then s and t unify if and only if they

areidentical.so it can beusedto test structural equivalenceofcircular types .7

Graph-theoreticformulationofunification,wheretypesarerepresentedbygraphs.Typevariables are

represented by leaves and type constructors are represented by interior nodes. Nodes

aregroupedintoequiv-alenceclasses; iftwonodes areinthesameequivalenceclass,thenthetypeexpressions

they represent must unify. Thus, all interior nodes in the same class must be for the

sametypeconstructor, and their correspondingchildrenmust beequivalent.

Example6.18:Consider thetwotypeexpressions

 Department of CSE Page 36 of 45

Theunificationalgorithm,usesthefollowingtwooperationson nodes:

find{n)returns therepresentative nodeofthe equivalence class currently containingnode n.

union(m, n) merges the equivalence classes containing nodes m and n. If one of the

representativesfor the equivalence classes of m and n is a non-variable node, union makes that

nonvariable node bethe representative for the merged equivalence class; otherwise, union makes one

or the other of theoriginal representatives be the new representative. This asymme-try in the

specification of union isimportant because a variable cannot be used as the representative for an

equivalence class for anexpression containing a type constructor or basic type. Otherwise, two

inequivalent expressions maybeunified through that variable.

ControlFlow

1 BooleanExpressions

2 Short-CircuitCode

3 Flow-of-ControlStatements

4 Control-Flow Translation of Boolean

ExpressionsInprogramminglanguages,booleanexpressionsareoften

usedto

1. Alterthe flowofcontrol.Booleanexpressionsareusedasconditionalexpressionsinstatementsthat
alter the flow of control. The value of such boolean expressions is implicit in a position reached in

aprogram.For example, in if(E)5, the expressionEmust betrueif statementS isreached.

2. Computelogicalvalues.Aboolean expressioncanrepresenttrueOrfalseasvalues.Suchboolean

 Department of CSE Page 37 of 45

expressions can be evaluated in analogy to arithmetic expressions using three-address

instructionswithlogical operators.

1 BooleanExpressions

Boolean expressions are composed of the boolean operators (which we denote &&, I I, and !, using

theC convention for the operators AND, OR, and NOT, respectively) applied to elements that are

booleanvariablesorrelationalexpressions. Booleanexpressionsgeneratedby the following grammar:

Given the expression Bi I I B2, if we determine that B1 is true, then we can conclude that the

entireexpression is true without having to evaluate B2.Similarly, given B1 && B2, if Bi is false,

then theentireexpression is false.

2 Short-CircuitCode

In short-circuit (or jumping) code,thebooleanoperators&&,II,and!translateintojumps.Theoperators

themselves do not appear in the code; instead, the value of a boolean expression is

representedbyaposition in thecodesequence.

Example The statement

i f (x <100||x >200 && x!=y)x =0;

might be translated into the code of Fig. 6.34. In this translation, the boolean expression is true if

controlreacheslabel L2. Iftheexpressionisfalse,controlgoesimmediatelyto Lu skipping L2

andtheassignment x=0.

3 Flow-of-ControlStatements

Intheseproductions,nonterminalBrepresentsabooleanexpressionandnon-terminalSrepresentsastatement.

 Department of CSE Page 38 of 45

B and S have a synthesized attribute code, which gives the translation into three-address instructions.

webuildup the translationsB.codeand S.codeas strings, usingsyntax directed definitions.

Thetranslationofif(B)S1consistsofB.codefollowedbySi.code,asillustratedin Fig.6.35(a).

WithinB.codearejumpsbasedon thevalueof B.IfB istrue, control flowsto thefirst

instructionofSi.code,and ifB is false, control flowsto theinstructionimmediately following S1. code.

Codeforif,if else,whilestatements

 Department of CSE Page 39 of 45

Thesyntax-directeddefinitioninFig.6.36-6.37producesthree-

addresscodeforbooleanexpressionsinthecontext ofif-, if-else-, and while-statements.

 Department of CSE Page 40 of 45

4 Control-FlowTranslationofBooleanExpressions

Boolean expression B is translated into three-address instructions that evaluate B using

createslabelsonlywhentheyareneeded.Alternatively,unnecessarylabelscanbeeliminatedduringasubsequen

toptimization phase.

Backpatching

1One-

PassCodeGenerationUsingBackpatching2Backpa

tching for Boolean Expressions

3Flow-of-ControlStatements

1 One-PassCodeGenerationUsingBackpatching

The problem in generating three address codes in a single pass is that we may not know

thelabelsthat controlmust goto atthe timejump statementsaregenerated.Sotoget aroundthis

 Department of CSE Page 41 of 45

problem a series of branching statements with the targets of the jumps temporarily left unspecified

isgenerated.BackPatchingisputtingtheaddressinsteadoflabelswhentheproperlabelisdetermined.

Tomanipulatelists ofjumps,Backpatching Algorithmsperform threetypes ofoperations

1.makelist(i) creates a new list containing only i, an index into the array of instructions; makelist

returnsapointer to thenewly created list.

2. merge(pi,p2) concatenates the lists pointed to by p1 and p2, and returns a pointer to the

concatenatedlist.

3. backpatch(p,i)insertsiasthe targetlabel for each oftheinstructionson thelist pointedto byp.

2 BackpatchingforBooleanExpressions

Construct a translation scheme suitable for generating code for boolean expressions during bottom-

upparsing. A marker nonterminal M in the grammar causes a semantic action to pick up, at

appropriatetimes,theindex ofthe next instruction to begenerated. Thegrammar is as follows:

 Department of CSE Page 42 of 45

Consider semantic action (1) for the production B -> B1|| M B2. If Bx is true, then B is

alsotrue,sothejumpsonBi.truelistbecomepartofB.truelist.IfBiisfalse,however,wemustnexttestB2,so the

target forthe jumps B>i .falselist must be the beginning of the code generated for B2 •

ThistargetisobtainedusingthemarkernonterminalM.Thatnonterminalproduces,asasynthesizedattributeM.i

nstr, the index ofthenext instruction, just beforeB2 codestarts beinggenerated.

Example

Considerexpression

AnannotatedparsetreeisshowninFig.6.44;attributes truelist,falselist, and instr arerepresented by

their initial letters. The actions are performed during a depth-first traversal of the tree.Since all actions

appear at the ends of right sides, they can be performed in conjunction with reductionsduring a bottom-

up parse. In response to the reduction of x <100 to B by production (5), the twoinstructions

aregenerated.(startinstructionnumbersat100.) ThemarkernonterminalMin theproduction

recordsthevalueofnextinstr,whichatthistimeis102.

 Thereductionofx>200toBbyproducti

on(5) generates the instructions

 Department of CSE Page 43 of 45

The marker nonterminal M records the current value of nextinstr, which is

nowReducingx!=yinto Bby production (5)generates

WenowreducebyB—>B1&&MB2.Thecorrespondingsemanticactioncallsbackpatch(B1.truelist,M.instr)

to bind the true exit of B1 to the first instruction of B2. Since B1.truelistis {102} and M.instr is 104, this

call to backpatch fills in 104 in instruction 102. The six instructionsgeneratedso far arethus as shown in

Fig. 6.45(a).

ThesemanticactionassociatedwiththefinalreductionbyB—>B1||MB2callsbackpatch({101},102)which

leaves theinstructions as in Fig

Theentireexpressionistrueifandonlyifthegotosofinstructions100or104arereached,andisfalseif and only if

the gotos of instructions 103 or 105 are reached. These instructions will have their targetsfilledin laterin

thecompilation, whenit is seenwhat mustbe donedepending on thetruth orfalsehood

oftheexpression.as

 Department of CSE Page 44 of 45

3 Flow-of-ControlStatements

usebackpatchingto translateflow-of-control statementsin onepass.

ThetranslationschemeinFig.6.46maintainslistsofjumpsthatarefilledinwhentheirtargets

are found.

Backpatch the jumps when B is true to the instruction Mi.instr; the latter is the beginning of

thecode for Si. Similarly, we backpatch jumps when B is false to go to the beginning of the code for S 2

.The list S.nextlist includes all jumps out of Si and S 2 , as well as the jump generated by N.

(Variabletempis atemporary thatis used only for merginglists.

 Department of CSE Page 45 of 45

Semanticactions(8)and(9)handlesequencesofstatements.In

theinstructionfollowingthecodeforL±inorderofexecutionisthebeginningofS.ThustheL1.nextlist list is

backpatched to the beginning of the code for S, which is given by M.instr. In L —> S,L.nextlistis

thesame as S.nextlist.

Notethatnonewinstructionsaregeneratedanywhereinthesesemanticrules,exceptforrules(3)and (7). All

other code is generated by the semantic actions associated with assignment-statements andexpressions.

The flow of control causes the proper backpatching so that the assignments and

booleanexpressionevaluations will connect properly.

	UNIT–III
	CANONICALLRPARSING
	ClosureOperation
	GotoOperation
	LR(1)items
	ALGORITHMFORCONSTRUCTIONOFTHECANONICALLRPARSINGTABLE
	Example,
	.LALRPARSER:
	ALGORITHMFOREASY CONSTRUCTIONOF ANLALR TABLE
	Considerthe aboveexample,
	HANDLINGERRORS
	DANGLINGELSE
	LRERROR RECOVERY
	PANIC-MODEERRORRECOVERY
	PHRASE-LEVELRECOVERY
	SyntaxDirectedTranslations
	SyntaxDirectedDefinitions
	SyntaxDirectedDefinitions:AnExample
	S-ATTRIBUTEDDEFINITIONS
	L-attributeddefinition
	Restrictionsfortranslation schemes:

	EvaluationorderofSDTS
	1DependencyGraphs
	2. OrderingtheEvaluationofAttributes
	3. S-AttributedDefinitions
	4L-AttributedDefinitions
	1ConstructionofSyntaxTrees2TheStructureofa Type
	1 ConstructionofSyntaxTrees
	.
	2 TheStructureof aType
	SyntaxDirectedTranslationSchemes.
	1PostfixTranslationSchemes
	2Parser-StackImplementationofPostfixSDT's
	3 SDT'sWithActionsInsideProductions
	4 EliminatingLeftRecursion FromSDT's
	UNIT–III
	LogicalStructureofa CompilerFrontEnd
	Sequenceofintermediaterepresentations
	VariantsofSyntax Trees
	1.DirectedAcyclicGraphsforExpressions
	2TheValue-NumberMethodforConstructingDAG's
	1AddressesandInstructions
	commonthree-addressinstruction
	7. Addressandpointerinstructions:
	DataStructure
	2. Quadruples

	3TRIPLES
	IndirectTriples

	TypesandDeclarations
	1TypeExpressions
	Definition
	2TypeEquivalence
	3. Declarations
	4. StorageLayoutfor LocalNames
	AddressAlignment

	TranslationsofExpressions
	1OperationsWithinExpressions
	2IncrementalTranslation
	3.AddressingArrayElements
	4TranslationofArrayReferences
	TypeChecking
	1 Rules forTypeChecking
	2 TypeConversions
	3 OverloadingofFunctionsandOperators
	4 TypeInferenceandPolymorphicFunctions
	5 AnAlgorithm forUnification

	ControlFlow
	1 BooleanExpressions
	2 Short-CircuitCode
	3 Flow-of-ControlStatements
	Codeforif,if else,whilestatements
	4 Control-FlowTranslationofBooleanExpressions

	Backpatching
	1 One-PassCodeGenerationUsingBackpatching
	2 BackpatchingforBooleanExpressions
	Example
	3 Flow-of-ControlStatements

