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UNIT–III 

MorePowerful   LR parser (LR1,LALR) Using Armigers Grammars Equal Recovery in Lr 

parserSyntaxDirectedTransactionsDefinition,EvolutionorderofSDTSApplicationofSDTS.SyntaxDirecte

dTranslationSchemes. 
 

UNIT-3 
 

 

CANONICALLRPARSING 

 

CLR refers to canonical lookahead. CLR parsing use the canonical collection of LR (1) items to 

buildthe CLR (1) parsing table. CLR (1) parsing table produces the more number of states as compare 

to theSLR (1)parsing. 

 

IntheCLR(1),weplace 

thereducenodeonlyinthelookaheadsymbols.Varioussteps involved in the 

CLR (1)Parsing: 

1) Forthegiveninput stringwriteacontextfreegrammar 

2) Checktheambiguityofthegrammar 

3) AddAugmentproductionin thegivengrammar 

4) CreateCanonicalcollection ofLR (0)items 

5) Drawadataflowdiagram(DFA) 

6) Constructa CLR(1)parsingtable 

 

In the SLR method we were working with LR(0)) items. In CLR parsing we will be using 

LR(1)items. LR(k) item is defined to be an item using lookaheads of length k. So ,the LR(1) item 

iscomprised of two parts : the LR(0) item and the lookahead associated with the item. The look 

aheadis used to determine that where we place the final item. The look ahead always add $ symbol 

for theargumentproduction. 

LR(1)parsersaremorepowerfulparser. 
forLR(1)items we modify theClosureandGOTOfunction. 

 

ClosureOperation 

Closure(I)

repeat 

for(eachitem[A->?.B?,a]inI)for (each 

production B -> ? in 

G’)for(eachterminalbinFIRST(?a)) 

add [ B -> .? , b ] to set 

I;untilnomoreitemsareaddedtoI;ret

urn I; 
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GotoOperation 

 

Goto(I,X) 

InitialiseJtobethe empty set; 

for( each item A ->?.X?, a] inI) 

AdditemA->?X.?,a ] toseJ;/*movethedotone 

step*/returnClosure(J); /* apply closureto theset */ 

 

LR(1)items 

 

Voiditems(G’) 

Initialise C to { closure ({[S’ -> .S, 

$]})};Repeat 

For(eachset ofitemsIinC) 

For(eachgrammar symbolX) 

if( GOTO(I, X) is not empty and not in 

C)AddGOTO(I,X)to C; 

Untilnonew setof itemsareaddedto C; 

 
 

ALGORITHMFORCONSTRUCTIONOFTHECANONICALLRPARSINGTA

BLE 

 

Input:grammarG' 

Output:canonicalLR parsingtablefunctions actionandgoto 

1. ConstructC={I0,I1, ...,In}thecollectionofsets ofLR(1)items 
forG'.Stateiisconstructed fromIi. 

2. if[A-> a.ab,b>]isinIi and goto(Ii,a)=Ij,thensetaction[i, a]to"shiftj".Hereamust 
beaterminal. 

3. if[A-> a.,a] isinIi,thensetaction[i, a]to"reduce A-
>a"forallainFOLLOW(A). Here Amay not beS'. 

4. if[S'->S.]is inIi,thenset action[i,$]to"accept" 

5. Ifanyconflictingactionsaregeneratedbytheserules,thegrammarisnotLR(1)a
nd the algorithmfails to produceaparser. 

6. The goto transitions for state i are constructed for all nonterminals A using 
therule:If goto(Ii, A)= Ij, then goto[i,A] =j. 

7. Allentriesnot definedbyrules2and 3aremade"error". 

8. Theinital stateoftheparseris theoneconstructed from theset 

ofitemscontaining[S' ->.S, $]. 
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Example, 

Considerthefollowinggrammar, 

S‟-

>SS-

>CCC

-

>cCC-

>d 

Setsof LR(1)items 

I0: S‟-

>.S,$S-

>.CC,$ 

C-

>.Cc,c/dC-

>.d,c/d 

 

I1: S‟->S.,$ 

I2: S->C.C,$ 

C->.Cc,$ 

C->.d,$ 
 

I3:C->c.C,c/dC-

>.Cc,c/dC-

>.d,c/d 

I4: C->d.,c/d 

 

I5: S->CC.,$ 

 

I6: C->c.C,$ 

C->.cC,$ 

C->.d,$ 

 

I7: C->d.,$ 

 

I8: C->cC.,c/d 

 

I9: C->cC.,$ 



CSEDept.,Sir CRRCOE. 
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Hereis whatthecorresponding DFAlooks like 
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.LALRPARSER: 

We begin with two observations. First, some of the states generated for LR(1) 

parsinghavethesamesetofcore(orfirst)componentsanddifferonlyintheirsecondcomponent,thelo

okaheadsymbol.Ourintuitionisthatweshouldbeabletomergethesestatesandreduce the number 

of states we have, getting close to the number of states that would begenerated for LR(0) 

parsing. This observation suggests a hybrid approach: We can constructthe canonical LR(1) 

sets of items and then look for sets of items having the same core. Wemerge these sets with 

common cores into one set of items. The merging of states withcommon cores can never 

produce a shift/reduce conflict that was not present in one of theoriginal states because shift 

actions depend only on the core, not the lookahead. But it ispossiblefor themerger to 

produceareduce/reduceconflict. 

Our second observation is that we are really only interested in the lookahead 

symbolin places where there is a problem. So our next thought is to take the LR(0) set of 

items andadd lookaheads only where they are needed. This leads to a more efficient, but 

much morecomplicatedmethod. 

ALGORITHMFOREASY CONSTRUCTIONOF ANLALR TABLE 

Input:G' 

Output:LALRparsingtablefunctionswithaction 

andgotoforG'.Method: 

1. Construct C={I0,I1 ,...,In}thecollectionofsetsof LR(1)itemsforG'. 

2. Foreachcorepresentamong theset ofLR(1)items,find allsetshaving 

thatcoreandreplacethesesets bythe union. 

3. Let C' = {J0, J1 , ..., Jm} be the resulting sets of LR(1) items. The parsing 

actionsfor state i are constructed from Ji in the same manner as in the construction 

of thecanonicalLR parsing table. 

4. Ifthereisaconflict,the grammar isnotLALR(1)andthealgorithm fails. 

5. The goto table is constructed as follows: If J is the union of one or more sets 

ofLR(1) items, that is, J = I0U I1 U ... U Ik, then the cores of goto(I0, X), 

goto(I1,X), ..., goto(Ik, X) are the same, since I0, I1 , ..., Ik all have the same core. 

Let Kbethe union ofallsets ofitems having thesame coreasgoto(I1,X). 
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6. Thengoto(J,X)= K. 

Considerthe aboveexample, 

I3&I6canbereplacedbytheirunion I36:C->c.C,c/d/$ 

C-

>.Cc,C/D/$C

->.d,c/d/$ 

I47:C-

>d.,c/d/$I89:C-

>Cc.,c/d/$ 

ParsingTable 
 

state c d $ S C 

0 S36 S47  1 2 

1   Accept   

2 S36 S47   5 

36 S36 S47   89 

47 R3 R3    

5   R1   

89 R2 R2 R2   

 

HANDLINGERRORS 

The LALR parser may continue to do reductions after the LR parser would have spotted 

anerror, but the LALR parser will never do a shift after the point the LR parser would 

havediscoveredtheerror andwill eventually find theerror. 

 

DANGLINGELSE 

The dangling else is a problem in computer programming in which an optional else clause 

inan If–then(–else) statement results in nested conditionals being ambiguous. Formally, 

thecontext-free grammar of the language is ambiguous, meaning there is more than one 

correctparsetree. 

 

-45 - 
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Inmany programminglanguagesonemay writeconditionallyexecutedcodeintwoforms:theif-

then form,andtheif-then-elseform– the elseclauseis optional: 

 

 

 

 

Considerthegrammar: 

S ::=E $ 

E ::=E +E 

|E * E 

|( E) 

|id 

|num 

andfour ofits LALR(1) states: 
 

I0:S ::=.E$ ? 

E::=. E+E +*$ I1:S ::=E. $ ?I2:E ::= E* .E +*$ 

E::=. E* E +*$ E::=E . +E +*$ E::=.E+E +*$ 

E::=. (E) +*$ E::=E . *E +*$ E ::=. E * E +*$ 

E ::=. id+*$ E::=.(E) +*$ 

E ::=. num +*$ I3:E ::=E*E . +*$ E::=.id +*$ 

 E ::=E . +E +*$ E::=.num +*$ 

 
- 
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E::=E .* E +*$ 

Here we have a shift-reduce error. Consider the first two items inI3.If we have a*b+c andwe 

parsed a*b, do we reduce using E ::= E * E or do we shift more symbols? In the formercase 

we get a parse tree (a*b)+c; in the latter case we get a*(b+c). To resolve this conflict, wecan 

specify that * has higher precedence than +. The precedence of a grammar production isequal 

to the precedence of the rightmost token at the rhs of the production. For example, 

theprecedence of the production E ::= E * E is equal to the precedence of the operator *, 

theprecedence of the production E ::= ( E ) is equal to the precedence of the token ), and 

theprecedence of the production E ::= if E then E else E is equal to the precedence of the 

tokenelse. The idea is that if the look ahead has higher precedence than the production 

currentlyused,weshift.Forexample,ifweareparsingE+EusingtheproductionruleE::=E+Eand the 

look ahead is *, we shift *. If the look ahead has the same precedence as that of thecurrent 

production and is left associative, we reduce, otherwise we shift. The above grammaris valid 

if we define the precedence and associativity of all the operators. Thus, it is veryimportant 

when you write a parser using CUP or any other LALR(1) parser generator 

tospecifyassociativitiesandprecedence‟sformosttokens(especiallyforthoseusedasoperators). 

Note: you can explicitly define the precedence of a rule in CUP using the %precdirective: 

E::=MINUS E%precUMINUS 

where UMINUS is a pseudo-token that has higher precedence than TIMES, MINUS etc, 

sothat-1*2 is equal to (-1)*2, not to-(1*2). 

AnotherthingwecandowhenspecifyinganLALR(1)grammarforaparsergenerator is error 

recovery. All the entries in the ACTION and GOTO tables that have 

nocontentcorrespondtosyntaxerrors.Thesimplestthingtodoincaseoferroristoreportitandstopthe

parsing.Butwe wouldlike to continue parsingfinding more errors.Thisiscallederror recovery. 

Consider thegrammar: 

 
S ::=L =E ; 

|{ SL } 

;|error ; 

SL ::= S ; 

|SLS; 

The special token error indicates to the parser what to do in case of invalid syntax for S 

(aninvalid statement). In this case, it reads all the tokens from the input stream until it finds 

thefirst semicolon. The way the parser handles this is to first push an error state in the stack. 

Incase of an error, the parser pops out elements from the stack until it finds an error state 

whereit can proceed. Then it discards tokens from the input until a restart ispossible. 

Insertingerror handling productions in the proper places in a grammar to do good error 

recovery isconsideredvery hard. 

LRERROR RECOVERY 

An LR parser will detect an error when it consults the parsing action table and find 

ablank or error entry. Errors are never detected by consulting the goto table. An LR parser 

willdetectanerrorassoonasthereisnovalidcontinuationfortheportionoftheinputthusfar 
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scanned. A canonical LR parser will not make even a single reduction before announcing 

theerror.SLRandLALRparsersmaymakeseveralreductionsbeforedetectinganerror,buttheywill 

never shift an erroneous inputsymbol onto thestack. 

PANIC-MODEERRORRECOVERY 

We can implementpanic-modeerror recovery by scanning down the stack until astate s 

with a goto on a particular nonterminal A is found. Zero or more input symbols 

arethendiscardeduntilasymbolaisfoundthatcanlegitimatelyfollowA.Theparserthenstacks the 

state GOTO(s, A) and resumes normal parsing. The situation might exist wherethere is more 

than one choice for the nonterminal A. Normally these would be 

nonterminalsrepresentingmajorprogrampieces,e.g.anexpression,astatement,orablock.Forexam

ple,if A is the nonterminal stmt, a might be semicolon or }, which marks the end of a 

statementsequence. This method of error recovery attempts to eliminate the phrase containing 

thesyntactic error. The parser determines that a string derivable from A contains an error. 

Part ofthat string has already been processed, and the result of this processing is a sequence 

of stateson top of the stack. The remainder of the string is still in the input, and the parser 

attempts 

toskipovertheremainderofthisstringbylookingforasymbolontheinputthatcanlegitimately follow 

A. By removing states from the stack, skipping over the input,andpushing GOTO(s, A) on 

the stack, the parser pretends that if has found an instance of A andresumesnormal parsing. 

PHRASE-LEVELRECOVERY 

 
Phrase-level recovery is implemented by examining each error entry in the LR 

actiontable and deciding on the basis of language usage the most likely programmer error 

thatwould give rise to that error. An appropriate recovery procedure can then be 

constructed;presumably the top of the stack and/or first input symbol would be modified in a 

way deemedappropriate for each error entry. In designing specific error-handling routines for 

an LRparser, we can fill in each blank entry in the action field with a pointer to an error 

routine thatwilltakethe appropriateaction selected by thecompilerdesigner. 

 
Theactionsmayincludeinsertionordeletionofsymbolsfromthestackortheinputor both, or 

alteration and transposition of input symbols. We must make our choices so thatthe LR parser 

will not get into an infinite loop. A safe strategy will assure that at least oneinput symbol will 

be removed or shifted eventually, or that the stack will eventually shrink ifthe end of the 

input has been reached. Popping a stack state that covers a non terminal shouldbe avoided, 

because this modification eliminates from the stack a construct that has 

alreadybeensuccessfully parsed. 

SyntaxDirectedTranslations 

Weassociateinformationwithalanguageconstruct byattaching attributes tothegrammar 
symbol(s)representingtheconstruct, A syntax-directed definition specifies the values of attributes by 

associatingsemantic rules with the grammar productions. For example, an infix-to-postfix translator 

might have aproductionandrule 
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This production has two nonterminals, E and T; the subscript in E1distinguishes the occurrence of E 

inthe production body from the occurrence of E as the head. Both E and T have a string-valued 

attributecode. The semantic rule specifies that the string E.code is formed by concatenating Ei.code, 

T.code, andthecharacter'+'. Whiletherulemakesitexplicit thatthetranslationofE isbuiltup 

fromthetranslationsofE1, T,and '+',it maybeinefficientto implementthetranslationdirectlybymanipulating 

strings. 

 

asyntax-

directedtranslationschemeembedsprogramfragmentscalledsemanticactionswithinproductionbod

ies 

Therearetwonotationsforattachingsemantic rules: 

1. Syntax Directed Definitions. High-level specification hiding many 

implementationdetails(also called AttributeGrammars). 

2. Translation Schemes. More implementation oriented: Indicate the order in 

whichsemanticrules areto beevaluated. 

SyntaxDirectedDefinitions 

SyntaxDirectedDefinitionsareageneralizationof context-freegrammars inwhich: 

1. Grammarsymbolshavean associatedsetofAttributes; 

2. Productions are associated with Semantic Rules for computing the values of 
attributesSuch formalism generates Annotated Parse-Trees where each node of the 
tree is arecord with a field for each attribute (e.g.,X.a indicates the attribute a of the 
grammarsymbol X). 

 
Thevalue ofan attribute of agrammar symbol atagivenparse-treenodeisdefined 
byasemantic ruleassociated with theproduction usedat that node. 

Wedistinguishbetweentwo kindsofattributes: 

1. Synthesized Attributes. They are computed from the values of the attributes of 

thechildrennodes. 

2. Inherited Attributes. They are computed from the values of the attributes of both 

thesiblingsand theparent nodes 
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SyntaxDirectedDefinitions:AnExample 

LetusconsidertheGrammarforarithmeticexpressions.TheSyntaxDirectedDefinitiona

ssociates to eachnon terminal asynthesized attributecalledval. 

 

SDDofasimpledeskcalculator 

 
S-ATTRIBUTEDDEFINITIONS 

Definition. An S-Attributed Definition is a Syntax Directed Definition that 

usesonlysynthesized attributes. 

• Evaluation Order. Semantic rules in a S-Attributed Definition 

canbeevaluatedby abottom-up,orPostOrder,traversal oftheparse-tree. 

• Example. The above arithmetic grammar is an example of an S-

AttributedDefinition.Theannotatedparse-treefortheinput3*5+4nis: 
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L-attributeddefinition 

Definition:ASDDitsL-attributed ifeachinheritedattributeofXiinthe RHSofA! X1: 

:Xndepends onlyon 

1. attributesof X1;X2;: : :;Xi 1 (symbolsto theleft of Xiin the RHS) 

2. inheritedattributesofA. 

Restrictionsfortranslation schemes: 

 
1. InheritedattributeofXimustbecomputedbyanaction beforeXi. 
2. Anactionmustnotrefer to synthesizedattributeofanysymbol totherightofthataction. 
3. Synthesized attribute for A can only be computed after all attributes it references 

havebeencompleted(usually at end ofRHS). 

EvaluationorderofSDTS 
 

1 DependencyGraphs 

2 OrderingtheEvaluationofAttributes3

S-Attributed Definitions 

4L-AttributedDefinitions 

 
"Dependencygraphs"areausefultoolfordetermininganevaluationorderfortheattributeinstance

s in a given parse tree. While an annotated parse tree shows the values of attributes, 
adependencygraph helps us determinehow thosevalues can becomputed. 

 

1DependencyGraphs 

A dependency graph depicts the flow of information among the attribute in-stances in 
aparticular parse tree; an edge from one attribute instance to an-other means that the value of the first 
isneededtocomputethesecond.Edgesexpress constraintsimpliedby thesemanticrules.Inmoredetail: 

 

Suppose that a semantic rule associated with a production p defines the value of 
inheritedattribute B.c in terms of the value of X.a. Then, the dependency graph has an edge from X.a to 
B.c. Foreach node N labeled B that corresponds to an occurrence of this B in the body of production p, 
create anedge to attribute c at N from the attribute a at the node M that corresponds to this occurrence 
of X. NotethatMcould be either theparent or asibling ofN. 

Since a node N can have several children labeled X, we again assume that subscripts 
distinguishamonguses of thesame symbol atdifferent placesin theproduction. 

 

 

 

 
Example:Considerthefollowing productionandrule: 
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At every node N labeled E, with children corresponding to the body of this production, the 

synthesizedattribute val at N iscomputedusingthevaluesof val atthetwochildren,labeled E and T. 

Thus,aportion of the dependency graph for every parse tree in which this production is used looks like 

Fig. 5.6.As a convention, we shall show the parse tree edges as dotted lines, while the edges of the 

dependencygrapharesolid. 

 

2. OrderingtheEvaluationofAttributes 
 

The dependency graph characterizes the possible orders in which we can evalu-ate the 
attributesat the various nodes of a parse tree. If the dependency graph has an edge from node M to node 
N, thenthe attribute corresponding to M must be evaluated before the attribute of N. Thus, the only 
allowableorders of evaluation are those sequences of nodes N1, N2,... ,Nk such that if there is an edge 
of thedependency graph from Ni to Nj, then i < j. Such an ordering embeds a directed graph into a 
linearorder,and is called atopological sort of thegraph. 

Ifthereisanycyclein thegraph, thentherearenotopological sorts;thatis,thereis nowaytoevaluate 
the SDD on this parse tree. If there are no cycles, however, then there is always at least 
onetopologicalsort 

 
3. S-AttributedDefinitions 

AnSDD isS-attributed if every attributeis synthesized.When anSDDisS-attributed, wecanevaluate its 
attributes in any bottom-up order of the nodes of the parse tree. It is often especially simpleto evaluate 
the attributes by performing a postorder traversal of the parse tree and evaluating theattributesat a 
nodeN when the traversalleavesN forthe last time. 

S-attributed definitions can be implemented during bottom-up parsing, since a bottom-up 
parsecorrespondstoapostordertraversal.Specifically,postordercorrespondsexactlytotheorderinwhichanLR
parser reduces aproduction body to its head. 

 
4L-AttributedDefinitions 

The idea behind this class is that, between the attributes associated with a production 
body,dependency-graph edges can go from left to right, but not from right to left (hence "L-attributed"). 
Moreprecisely,eachattributemust beeither 

 

1. Synthesized,or 

2. Inherited,butwith the rules limitedas follows.Supposethatthereisaproduction A->X1X2 ....... 

Xn,andthat thereisan inheritedattributeXi.acomputedbyaruleassociatedwith thisproduction. 
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Thenthe rule mayuseonly: 

InheritedattributesassociatedwiththeheadA. 

Either inherited or synthesized attributes associated with the occurrences of symbols X1, X2,... , X(i-

1)locatedto the left ofXi. 

Inheritedorsynthesizedattributesassociatedwiththisoccurrenceof Xi 

itself,butonlyinsuchawaythatthereareno cycles in adependency graph formed by theattributes of this 

X i 

ApplicationofSDTS 

1ConstructionofSyntaxTrees2

TheStructureofa Type 

 

Themainapplicationistheconstructionofsyntaxtrees.Sincesomecompilersusesyntax treesas an 
intermediate representation, a common form of SDD turns its input string into a tree. To completethe 
translation to intermediate code, the compiler may then walk the syntax tree, using another set 
ofrulesthat areineffect anSDDonthe syntax treeratherthan theparsetree. 

 

1 ConstructionofSyntaxTrees 
 

Each node in a syntax tree represents a construct; the children of the node represent 

themeaningfulcomponentsoftheconstruct. Asyntax-treenoderepresentinganexpressionE1+ 

E2haslabel + and twochildrenrepresenting the subexpressionsE1 and E2 

implement the nodes of a syntax tree by objects with a suitable number of fields. Each 
objectwillhavean op field thatis thelabel of thenode. 

Theobjects willhave additional fieldsas follows: 

• If the node is a leaf, an additional field holds the lexical value for the leaf. A constructor function 

Leaf(op,val)createsaleafobject.Alternatively,ifnodesareviewedasrecords,thenLeafreturnsapointertoa new 

record for aleaf. 

• Ifthenodeisaninteriornode,thereareasmanyadditionalfieldsasthenodehaschildreninthesyntax tree. A 

constructor function Node takes two or more arguments: Node(op,ci,c2,... ,ck) creates anobjectwith first 

field opand k additionalfields for thek childrenc1,... ,. 

Example 
 

 
Figure 5.1 1 shows the construction of a syntax tree for the input a — 4 + c. The nodes of 

thesyntax tree are shown as records, with the op field first. Syntax-tree edges are now shown as solid 
lines.Theunderlying parsetree, which need not actuallybeconstructed, is shown with dottededges. The 
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third type of line, shown dashed, represents the values of E.node and T-node; each line points to 
theappropriatesyntax-treenode. 

. 
 

 

2 TheStructureof aType 
The type int [2][3] can be read as, "array of 2 arrays of 3 integers." The corresponding 

typeexpression array(2, array(3, integer)) is represented by the tree in Fig. 5.15. The operator array 
takestwoparameters,anumberandatype.Iftypes arerepresentedby trees,then thisoperator 
returnsatreenodelabeledarray with two children for anumber andatype. 

 
Nonterminal B generates one of the basic types int and float. T generates a basic type when T derives 
BC and C derives e. Otherwise, C generates array components consisting of a sequence of integers, 
eachintegersurrounded by brackets. 
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An annotated parse tree for the input string int [ 2 ] [ 3 ] is shown in Fig. 5.17. The corresponding 

typeexpression in Fig. 5.15 is constructed by passing the type integer from B, down the chain of C's 

throughtheinherited attributesb.Thearray typeis synthesized upthe chainof C'sthrough theattributest. 

In more detail, at the root for T -» B C, nonterminal C inherits the type from B, using the 

inheritedattribute C.b. At the rightmost node for C, the production is C e, so C.t equals C.6.The 

semantic rulesfor the production C [ num ] C1 form C.t by applying the operator array to the operands 

num.ua/ andC1.t. 
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SyntaxDirectedTranslationSchemes. 

 

1Postfix Translation Schemes 

2 Parser-Stack Implementation of Postfix 

SDT's3SDT's WithActions InsideProductions 

4EliminatingLeftRecursion FromSDT's 

 

syntax-directed translation scheme (SDT) is a context-free grammar with program 

fragmentsembedded within production bodies. The program fragments are called semantic actions and 

can appearat any position within a production body. By convention, we place curly braces around 

actions; if bracesare needed as grammar symbols, then we quote them.SDT's are implemented during 

parsing, withoutbuildinga parsetree. 

Twoimportantclassesof SDD'sare 

1. The underlying grammar is LR-parsable, and the SDD is S-

attributed.2.TheunderlyinggrammarisLL-parsable, andtheSDDisL-

attributed. 

1PostfixTranslationSchemes 

simplest SDD implementation occurs when we can parse the grammar bottom-up and the 

SDDis S-attributed. In that case, we can construct an SDT in which each action is placed at the end of 

theproduction and is executed along with the reduction of the body to the head of that production. 

SDT'swithall actions at therightends ofthe productionbodiesare called postfixSDT's. 

Example 5.14 : The postfix SDT in Fig. 5.18 implements the desk calculator SDD of Fig. 5.1, with 

onechange: the action for the first production prints a value. The remaining actions are exact 

counterparts ofthe semantic rules. Since the underlying grammar is LR, and the SDD is S-attributed, 

these actions canbecorrectly performedalong with thereduction steps of theparser. 
 

 

 

 

 
2Parser-StackImplementationofPostfixSDT's 

The attribute(s) of each grammar symbol can be put on the stack in a place where they can 
befoundduringthereduction. Thebestplan istoplacetheattributesalongwith thegrammarsymbols 
(ortheLR states that represent thesesymbols) in recordson thestack itself. 

InFig.5.19,theparserstackcontainsrecordswithafieldforagrammarsymbol(orparserstate)and,belowit,afieldforan

attribute.ThethreegrammarsymbolsXYZ areontopofthestack;perhapsthey 
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are about to be reduced according to a production like A —> X YZ. Here, we show X.x as the 

oneattribute of X, and so on. In general, we can allow for more attributes, either by making the records 

largeenough or by putting pointers to records on the stack. With small attributes, it may be simpler to 

makethe records large enough, even if some fields go unused some of the time. However, if one or 

moreattributes are of unbounded size — say, they are character strings — then it would be better to put 

apointer to the attribute's value in the stack record and store the actual value in some larger, 

sharedstorageareathat is not part ofthe stack. 
 

 

3 SDT'sWithActionsInsideProductions 

An action may be placed at any position within the body of a production.It is performed 

immediatelyafter all symbols to its left are processed. Thus,if we have a production B -» X {a} Y, the 

action a isdone after we have recognized X (if X is a terminal) or all the terminals derived from X (if X 

is anonterminal). 

Moreprecisely, 

• If the parse is bottom-up, then we perform action a as soon as this occurrence of X appears on the 

topoftheparsing stack. 

 

• If the parse is top-down, we perform a just before we attempt to expand this occurrence of Y (if Y 

anonterminal)orcheck for Yon the input (if Yis aterminal). 
 

4 EliminatingLeftRecursion FromSDT's 
 

First, consider the simple case, in which the only thing we care about is the order in which 
theactionsin anSDTareperformed.For example,if each actionsimply printsastring, 
wecareonlyabouttheorder in whichthestrings areprinted.In this case,the following principlecan guide 
us: 

Whentransforming thegrammar,treat theactionsas if theywereterminal symbols. 

This principle is based on the idea that the grammar transformation preserves the order of the 

terminalsin the generated string. The actions are therefore executed in the same order in any left-to-right 

parse,top-downorbottom-up. 

The"trick" foreliminating leftrecursionis totaketwoproductions 

A-> Aa|b 

 

that generate strings consisting of a j3 and any number of en's, and replace them by productions 

thatgeneratethe same stringsusing anewnonterminalR (for"remainder")of thefirst production: 

A->bR 

R—»•aR|e 
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If(3doesnotbeginwith A,thenAnolongerhasaleft-recursiveproduction.Inregular-definitionterms,withboth 

sets of productions, Ais defined by0(a)*. 

Example5 .17:ConsiderthefollowingE-productionsfromanSDTfortranslatinginfixexpressionsinto postfix 

notation: 

E -> Ei+T{print('+');}E -

> T 

Ifweapply thestandard transformationtoE,theremainder oftheleft-recursiveproduction isa

 = +T {print('-r'); } 

and thebodyoftheotherproductionisT.IfweintroduceRfortheremainderofE,wegetthesetofproductions: 

E      -->TR 

R      -->     + T { printC-h'); } 

RR->e 

When the actions of an SDD compute attributes rather than merely printing output, we must be 

morecarefulabouthowweeliminateleftrecursionfromagrammar.However,iftheSDDisS-attributed,then we 

can always construct an SDT by placing attribute-computing actions at appropriate positions inthenew 

productions. 
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UNIT–III 

IntermediatedCode:GenerationVariantsofSyntaxtrees3Addresscode,TypesandDeceleration,Translationof

Expressions,TypeChecking.CantedFlowBackpatching? 

 

INTERMEDIATECODE 

Intheanalysis-synthesismodelofacompiler,thefrontendanalyzesasourceprogram and 

creates an intermediate representation, from which the back end generates targetcode. This 

facilitates retargeting: enables attaching a back end for the new machine to anexistingfront 

end. 

 

LogicalStructureofa CompilerFrontEnd 

 

 
 

Acompilerfrontendisorganizedasinfigureabove,whereparsing,staticchecking, and 

intermediate-code generation are done sequentially; sometimes they can becombined and 

folded into parsing. All schemes can be implemented by creating a syntaxtreeand traversing 

the tree. 

 

Static checking includes type checking, which ensures that operators are applied to 

compatibleoperands.Intheprocessoftranslatingaprogram inagiven sourcelanguageintocodefor 

agiventargetmachine,a compilerconstruct a sequenceofintermediate representations 
 
 

 
Sequenceofintermediaterepresentations 

 
High-levelrepresentationsareclosetothesourcelanguageandlow-levelrepresentationsareclosetothe target 

machine. A low-level representation is suitable for machine-dependent tasks like registerallocationand 

instruction selection. 

 

 

 

 

 

 
 

 

JSVGKrishna,AssociateProfessor. 
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VariantsofSyntax Trees 

1 DirectedAcyclicGraphsforExpressions 

2 TheValue-NumberMethod forConstructing DAG's 

1.DirectedAcyclicGraphsforExpressions 

Like the syntax tree for an expression, a DAG has leaves corresponding to 

atomicoperands and interior codes corresponding to operators. The difference is that a node N in a 

DAG hasmore than one parent if N represents a com-mon subexpression; in a syntax tree, the tree for 

thecommon subexpression would be replicated as many times as the subexpression appears in the 

originalexpression. 

 

Example:Considerexpression 

a +a*(b-c) + (b-  c)*d 
 
 

 

2TheValue-NumberMethodforConstructingDAG's 

The nodes of a syntax tree or DAG are stored in an array of records, as suggested by Fig. 

6.6.Each row of the array represents one record, and therefore one node. In each record, the first field is 

anoperation code, indicating the label of the node. In Fig. 6.6(b), leaves have one additional field, 

whichholds the lexical value (either a symbol-table pointer or a constant, in this case), and interior 

nodes havetwoadditional fields indicating the left andright children. 
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Inthisarray,werefertonodesbygivingtheintegerindex oftherecordfor thatnodewithinthearray. 

This integer iscalled the value numberfor thenode. 

 
Algorithm:Thevalue-numbermethod forconstructingthe nodesof 

aDAG.INPUT: Label op, node /, and noder. 

OUTPUT: Thevalue numberof anodein thearray with signature(op,l,r). 

METHOD : Search the array for a node M with label op, left child I, and right child r. If there is such 

anode,returnthevaluenumberofM.Ifnot,createinthearrayanewnodeNwithlabelop, 

leftchildI,andrightchildr,andreturn its valuenumber. 

Three-AddressCode 

1 Addresses and 

Instructions2Quadruples 

3Triples 

In three-address code, there is at most one operator on the right side of an instruction; that is, 

nobuilt-up arithmetic expressions are permitted. Thus a source-language expression like x+y*z might 

betranslatedinto the sequenceof three-address instructions 
 

 

wheretiandt2arecompiler-generatedtemporary names. 

 

1AddressesandInstructions 

Anaddresscanbeoneof thefollowing: 

• A name. Source-program names to appear as addresses in three-address code. In 

animplementation, a source name is replaced by a pointer to its symbol-table 

entry,whereall information about the name is kept. 

• Aconstant.Acompilermustdealwithmanydifferenttypesof constantsandvariables. 

 

• A compiler-generated temporary. Useful in optimizing com-pilers, to create a distinct name 

eachtime a temporary is needed. These temporaries can be combined, if possible, when registers 

areallocatedto variables. 

commonthree-addressinstruction 

1. AssignmentStatement: x=yopz andx=opy 

Here,x, yandzaretheoperands.oprepresentstheoperator. 

2. CopyStatement: x=y 
 

3. ConditionalJump: IfxrelopygotoX 
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Ifthe condition“x relop y”getssatisfied, then- 

ThecontrolissentdirectlytothelocationspecifiedbylabelX.Allthe

statements in between areskipped. 

Ifthecondition“x relopy”fails,then- 

Thecontrolis notsentto thelocationspecified bylabelX. 

Thenext statement appearing intheusual sequenceis executed. 

4. Unconditional Jump-gotoX 

Onexecutingthestatement,ThecontrolissentdirectlytothelocationspecifiedbylabelX. 

Allthestatementsin betweenareskipped. 

5. Procedure Call-paramxcallpreturny 
 

Here,pisafunctionwhichtakes xasaparameterandreturnsy. 

Foraprocedurecallp(x1, …, xn) 

paramx1 

… 

paramxn

callp, n 

 
6. Indexedcopyinstructions:x=y[i]and x[i]=y 

Left: sets x to the value in the location i memory units beyond 

yRight:setsthecontentsofthelocationimemoryunitsbeyondxtoy 
 

7. Addressandpointerinstructions: 

x=&y setsthevalue of xto be thelocation(address) ofy. 

x = *y, presumably y is a pointer or temporary whose value is 

alocation.Thevalueofxissettothecontentsofthatlocation. 

*x=y setsthevalue of theobject pointed toby x to thevalue ofy. 

 

DataStructure 

Threeaddresscodeisrepresentedasrecordstructurewithfieldsforoperatorandoperands.Thesere

cordscanbestoredasarrayorlinkedlist.Mostcommonimplementationsofthreeaddresscodeare

Quadruples,Triples andIndirecttriples. 

2. Quadruples 

Quadruples consists of four fields in the record structure. One field to store operator op, 

twofieldsto storeoperands or argumentsarg1and arg2 andonefield tostore result res. 

res = arg1 op 

arg2Example:a =b +c 

bisrepresented asarg1, cisrepresentedasarg2, +as opandaasres. 
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Unary operators like „-„do not use agr2. Operators like param do not use agr2 nor result. 

Forconditional and unconditional statements res is label. Arg1, arg2 and res are pointers 

tosymboltable orliteral table for thenames. 

Example:a =-b *d+c +(-b)* d 

Three address code for the above statement is as 

followst1 =-b 

t2 = t1 * 

dt3 = t2 + 

ct4 =-b 

t5 = t4 * d 

t6 = t3 + 

t5a=t6 

Quadruplesfortheabove exampleis asfollows 
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3TRIPLES 

 
Triples uses only three fields in the record structure. One field for operator, two fields 

foroperands named as arg1 and arg2. Value of temporary variable can be accessed by 

thepositionofthe statement thecomputes itand not by location as inquadruples. 

 

Example:a =-b *d+c +(-b)* d 

Triplesforthe aboveexampleis as follows 
 

 

 
Arg1andarg2maybepointerstosymboltableforprogramvariablesorliteraltableforconst

ant or pointers into triplestructureforintermediate results. 

Example:Triples forstatement x[i] =y which generatestwo recordsis as follows 
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Triplesforstatementx=y[i]whichgeneratestworecordsisasfollows 
 

 

 

 
Triplesarealternative waysforrepresentingsyntaxtreeorDirectedacyclic 

graphforprogram defined names. 

IndirectTriples 

Indirecttriplesareusedtoachieveindirectionin listingofpointers.Thatis,itusespointerstotriples 

than listing of triples themselves. 

Example:a =-b *d+c +(-b)* d 
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TypesandDeclarations 

 
 

1 TypeExpressions 

2 TypeEquivalence 

3 Declarations 

4 StorageLayoutforLocalNames 

 

1TypeExpressions 

 
Types have structure, which we shall represent using type expressions: a type expression is either 

abasictypeoris formed byapplying an operatorcalled a typeconstructortoatypeexpression. 

Definition 

 Abasictypeisatypeexpression.Typicalbasictypesforalanguageincludeboolean,char,integer,float,a

nd void;the latterdenotes "theabsenceofavalue."

 Atypename isatypeexpression.

 Atypeexpressioncanbe formed byapplying the arraytypeconstructortoanumberandatype

 expression.

 Arecordisadatastructurewithnamedfields.Atypeexpressioncanbeformedbyapplyingtherecord type 

constructor to the field names andtheirtypes.

 If s and t are type expressions, then their Cartesian product s x t is a type expression. 
Productsare introduced for completeness; they can be used to represent a list or tuple of types 
(e.g., forfunctionparameters).

 Typeexpressions may containvariables whosevaluesaretypeexpressions

 
2TypeEquivalence 

Many type-checking rules have the form, "if two type expressions are equal then return a 

certaintype else error." Potential ambiguities arise when names are given to type expressions. The key 

issue iswhether a name in a type expression stands for itself or whether it is an abbreviation for another 

typeexpression. 

Since type names denote type expressions, they can set up implicit cycles; see the box on 

"TypeNames and Recursive Types." If edges to type names are redirected to the type expressions 

denoted bythenames,then theresulting graph can havecycles dueto recursivetypes. 

When type expressions are represented by graphs, two types are structurally equivalent if and only 

ifoneof thefollowing conditions is true: 

Theyarethe samebasic type. 

They are formed by applying the same constructor to structurally equivalent 

types.Oneis a typename that denotes the other. 

Iftypenamesaretreatedasstandingforthemselves,thenthefirsttwoconditionsintheabovedefinitionlead to 

nameequivalence of typeexpressions. 

Name-equivalent expressions are assigned thesame value number,. Structural equivalence can 

betestedusing theunification algorithm . 
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3. Declarations 

Understand types and declarations using a simplified grammar that declares just one name at a 

time;Thegrammar is 
 

 
The fragment of the above grammar that deals with basic and array types.Consider storage layout 

aswellastypes.Nonterminal D generatesasequenceofdeclarations.Nonterminal T generatesbasic,array, or 

record types. Nonterminal B generates one of the basic types int and float. Nonterminal C, 

for"component," generates strings of zero or more integers, each integer surrounded by brackets. An 

arraytype consists of a basic type specified by B, followed by array components specified by 

nonterminal C.A record type (the second production for T) is a sequence of declarations for the fields of 

the record, allsurroundedby curly braces. 

4. StorageLayoutfor LocalNames 

From the type of a name, we can determine the amount of storage that will be needed for 

thename at run time. At compile time, we can use these amounts to assign each name a relative 

address.The type and relative address are saved in the symbol-table entry for the name. Data of varying 

length,such as strings, or data whose size cannot be determined until run time, such as dynamic arrays, 

ishandledby reserving aknown fixed amount of storagefor apointer to thedata. 

AddressAlignment 

The storage layout for data objects is strongly influenced by the address-ing constraints of the 

targetmachine. For example, instructions to add integers may expect integers to be aligned, that is, 

placed atcertain positions in memory such as an address divisible by 4. Although an array of ten 

characters needsonly enough bytes to hold ten characters, a compiler may therefore allocate 12 bytes— 

the nextmultiple of 4 — leaving 2 bytes unused. Space left unused due to alignment considerations is 

referred toas padding. When space is at a premium, a compiler may pack data so that no padding is left; 

additionalinstructions may then need to be executed at run time to position packed data so that it can be 

operatedonas if it wereproperlyaligned. 

Suppose that storage comes in blocks of contiguous bytes, where a byte is the smallest unit 

ofaddressable memory. The width of a type is the number of storage units needed for objects of that 

type.A basic type, such as a character, integer, or float, requires an integral number of bytes. For easy 

access,storagefor aggregatessuch as arraysandclasses isallocated in onecontiguous block ofbytes. 

The translation scheme (SDT) computes types and their widths for basic and array types; The 

SDTuses synthesized attributes type and width for each nonterminal and two variables t and w to pass 

typeand width information from a B node in a parse tree to the node for the production C —> e. In a 

syntax-directeddefinition, t and w would beinherited attributes forC. 
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The body of the T-production consists of nonterminal B, an action, and nonterminal C, 

whichappears on the next line. The action between B and C sets t to B.type and w to B. width. If B —>• 

intthen B.type is set to integer and B.width is set to 4, the width of an integer. Similarly, if B -+ float 

thenB.typeis float and B.width is 8, the width of afloat. 

The productions for C determine whether T generates a basic type or an array type. If C —>• 

e,then t becomes C.type and w becomes C. width. Otherwise, C specifies an array component. The 

actionfor C —> [ n u m ] C1 forms C.type by applying the type constructor array to the operands 

num.valueand C1.type. 
 

The width of an array is obtained by multiplying the width of an element by the number 

ofelements in the array. If addresses of consecutive integers differ by 4, then address calculations for 

anarrayofintegerswillincludemultiplicationsby4.Suchmultiplicationsprovideopportunitiesforoptimization

,so it is helpful for thefront endto makethem explicit. 

ExampleThe parse tree for the type i n t [2] [3] is shown by dotted lines in Fig. 6.16. The solid 

linesshow how the type and width are passed from B, down the chain of C's through variables t and w, 

andthen back up the chain as synthesized attributes type and width. The variables t and w are assigned 

thevalues of B.type and B.width, respectively, before the subtree with the C nodes is examined. The 

valuesof t and w are used at the node for C —> e to start the evaluation of the synthesized attributes up 

thechainof C nodes. 
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TranslationsofExpressions 

1OperationsWithinExpressions2

Incremental Translation 

3 AddressingArrayElements 

4 TranslationofArrayReferences 

1OperationsWithinExpressions 

The syntax-directed definition builds up the three-address code for an assignment statement S 

usingattribute code for S and attributes addr and code for anexpression E. Attributes S.code and 

E.codedenote the three-address code for S and E, respectively. Attribute E.addr denotes the address 

that willhold thevalue ofE. 
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Example The syntax-directed definition in Fig. 6.19 translates the assignment 

statementa=b+-c;intotheTAC 

 

 

2IncrementalTranslation 

Code attributes can be long strings, so they are generated incrementally In the 
incrementalapproach, gen not only constructs a three-address instruction, it appends the instruction to 
the sequenceof instructions generated so far. The sequence may either be retained in memory for further 
processing,or it may be output incrementally.attribute addr represents the address of a node rather than a 
variable orconstant. 

 

 

 

3.AddressingArrayElements 

Elements of arrays can be accessed quickly if the elements are stored in a block of 
consecutivelocation.Arraycan beonedimensional ortwo dimensional. 

 

Foronedimensionalarray: 

A:array[low..high]oftheithelementsisat: 

base+(i-low)*width=i*width +(base-low*width) 

 
Multi-dimensionalarrays: 

 
Rowmajororcolumnmajorforms 

oRow major:a[1,1], a[1,2],a[1,3], a[2,1],a[2,2], a[2,3] 

oColumnmajor:a[1,1],a[2,1],a[1,2],a[2,2],a[1, 3],a[2,3] 

o Inrowmajor form,theaddressofa[i1, i2]is 

o Base+((i1-low1)*(high2-low2+1)+i2-low2)*width 
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4TranslationofArrayReferences 

Lgenerate anarraynamefollowedbyasequenceofindexexpressions: 
 
 

 

Calculate addresses based on widths, using the formularather than on numbers of elements. 

Thetranslation scheme generates three-address code for expressions with array references. It consists of 

theproductionsand semanticactions together with productionsinvolving nonterminal 

.  
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TypeChecking 

1RulesforTypeChecking2

TypeConversions 

3 Overloadingof FunctionsandOperators 

4 TypeInferenceandPolymorphicFunctions5

An Algorithm forUnification 

Typecheckingacompiler needstoassignatype 
expressiontoeachcomponentofthesourceprogram. The compiler must then determine that these type 
expressions conform to a collection oflogicalrules that is calledthetypesystemforthe sourcelanguage. 

 

1 Rules forTypeChecking 

Type checking can take on two forms: synthesis and inference. Type synthesis builds up the 

typeof an expression from the types of its subexpressions. It requires names to be declared before they 

areused. The type of E1 +E2 is defined in termsof the types of E1 and E2 • A typical rule for 

typesynthesishas the form 

 

 
Typeinferencedeterminesthetypeofalanguageconstructfromthewayitisused.Rulefortypeinferencehas theform 

 

 
2 TypeConversions 

integersareconvertedtofloatswhennecessary,usingaunaryoperator(float).Forexample,theinteger2 is 

converted to a floatin thecodefortheexpression2*3.14: 
 

Type conversion rules vary from language to language. The rules for Java in Fig. 6.25 
distinguishbetween widening conversions, which are intended to preserve information, and narrowing 
conversions,whichcan lose information. 
Conversionfromonetypetoanotherissaidtobeimplicit ifitisdoneautomaticallybythecompiler.Implicittype 

conversions, also calledcoercions, 
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3 OverloadingofFunctionsandOperators 

An overloaded symbol has different meanings depending on its context. The + operator in 
Javadenoteseither string concatenation oraddition 

 

Type-synthesisruleforoverloaded functions: 
 
 

 
4 TypeInferenceandPolymorphicFunctions 

TypeinferenceisusefulforalanguagelikeML,whichisstronglytyped,butdoesnotrequirenamesto 

bedeclared beforetheyareused.Typeinferenceensuresthat namesareusedconsistently. 

Theterm"polymorphic"referstoanycodefragmentthatcanbeexecutedwithargumentsofdifferenttypes. 

Thetypeoflengthcanbedescribedas,"foranytypea,lengthmapsalistofelementsoftypeatoaninteger." 
 

 
The program fragment defines function length with one parameter x. The body of the function 

consistsofaconditionalexpression.Thepredefinedfunction null 

testswhetheralistisempty,andthepredefinedfunctiontl (shortfor "tail")returns the remainder ofalistafter 

thefirst elementis removed. 
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5 AnAlgorithm forUnification 

Unification is the problem of determining whether two expressions s and t can be made 

identicalby substituting expressions for the variables in s and t. Testing equality of expressions is a 

special caseof unification; if s and t have constants but no variables, then s and t unify if and only if they 

areidentical.so it can beusedto test structural equivalenceofcircular types .7 

Graph-theoreticformulationofunification,wheretypesarerepresentedbygraphs.Typevariables are 

represented by leaves and type constructors are represented by interior nodes. Nodes 

aregroupedintoequiv-alenceclasses;  iftwonodes  areinthesameequivalenceclass,thenthetypeexpressions 

they represent must unify. Thus, all interior nodes in the same class must be for the 

sametypeconstructor, and their correspondingchildrenmust beequivalent. 

 
Example6.18:Consider thetwotypeexpressions 
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Theunificationalgorithm,usesthefollowingtwooperationson nodes: 

find{n)returns therepresentative nodeofthe equivalence class currently containingnode n. 

union(m, n) merges the equivalence classes containing nodes m and n. If one of the 

representativesfor the equivalence classes of m and n is a non-variable node, union makes that 

nonvariable node bethe representative for the merged equivalence class; otherwise, union makes one 

or the other of theoriginal representatives be the new representative. This asymme-try in the 

specification of union isimportant because a variable cannot be used as the representative for an 

equivalence class for anexpression containing a type constructor or basic type. Otherwise, two 

inequivalent expressions maybeunified through that variable. 

 

ControlFlow 

1 BooleanExpressions 

2 Short-CircuitCode 

3 Flow-of-ControlStatements 

4 Control-Flow Translation of Boolean 

ExpressionsInprogramminglanguages,booleanexpressionsareoften

usedto 

1. Alterthe flowofcontrol.Booleanexpressionsareusedasconditionalexpressionsinstatementsthat 
alter the flow of control. The value of such boolean expressions is implicit in a position reached in 

aprogram.For example, in if(E)5, the expressionEmust betrueif statementS isreached. 

 

2. Computelogicalvalues.Aboolean expressioncanrepresenttrueOrfalseasvalues.Suchboolean 
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expressions can be evaluated in analogy to arithmetic expressions using three-address 

instructionswithlogical operators. 

 
1 BooleanExpressions 

Boolean expressions are composed of the boolean operators (which we denote &&, I I, and !, using 

theC convention for the operators AND, OR, and NOT, respectively) applied to elements that are 

booleanvariablesorrelationalexpressions. Booleanexpressionsgeneratedby the following grammar: 
 

 
Given the expression Bi I I B2, if we determine that B1 is true, then we can conclude that the 

entireexpression is true without having to evaluate B2.Similarly, given B1 && B2, if Bi is false, 

then theentireexpression is false. 

2 Short-CircuitCode 

In short-circuit (or jumping) code,thebooleanoperators&&,II,and!translateintojumps.Theoperators 

themselves do not appear in the code; instead, the value of a boolean expression is 

representedbyaposition in thecodesequence. 

Example  The  statement 

i f   (x  <100||x >200 && x!=y)x =0; 

might be translated into the code of Fig. 6.34. In this translation, the boolean expression is true if 

controlreacheslabel L2. Iftheexpressionisfalse,controlgoesimmediatelyto Lu skipping L2 

andtheassignment x=0. 

 

 
3 Flow-of-ControlStatements 

 

 

 

Intheseproductions,nonterminalBrepresentsabooleanexpressionandnon-terminalSrepresentsastatement. 
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B and S have a synthesized attribute code, which gives the translation into three-address instructions. 

webuildup the translationsB.codeand S.codeas strings, usingsyntax directed definitions. 

Thetranslationofif(B)S1consistsofB.codefollowedbySi.code,asillustratedin Fig.6.35(a). 

WithinB.codearejumpsbasedon thevalueof B.IfB istrue, control flowsto thefirst 

instructionofSi.code,and ifB is false, control flowsto theinstructionimmediately following S1. code. 
 

Codeforif,if else,whilestatements 
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Thesyntax-directeddefinitioninFig.6.36-6.37producesthree-

addresscodeforbooleanexpressionsinthecontext ofif-, if-else-, and while-statements. 
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4 Control-FlowTranslationofBooleanExpressions 

Boolean expression B is translated into three-address instructions that evaluate B using 

createslabelsonlywhentheyareneeded.Alternatively,unnecessarylabelscanbeeliminatedduringasubsequen

toptimization phase. 
 

 

 

Backpatching 

1One-

PassCodeGenerationUsingBackpatching2Backpa

tching for Boolean Expressions 

3Flow-of-ControlStatements 

 
1 One-PassCodeGenerationUsingBackpatching 

 

The problem in generating three address codes in a single pass is that we may not know 

thelabelsthat controlmust goto atthe timejump statementsaregenerated.Sotoget aroundthis 
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problem a series of branching statements with the targets of the jumps temporarily left unspecified 

isgenerated.BackPatchingisputtingtheaddressinsteadoflabelswhentheproperlabelisdetermined. 

 

Tomanipulatelists ofjumps,Backpatching Algorithmsperform threetypes ofoperations 

1.makelist(i) creates a new list containing only i, an index into the array of instructions; makelist 

returnsapointer to thenewly created list. 

2. merge(pi,p2) concatenates the lists pointed to by p1 and p2, and returns a pointer to the 

concatenatedlist. 

3. backpatch(p,i)insertsiasthe targetlabel for each oftheinstructionson thelist pointedto byp. 
 

2 BackpatchingforBooleanExpressions 

Construct a translation scheme suitable for generating code for boolean expressions during bottom-

upparsing. A marker nonterminal M in the grammar causes a semantic action to pick up, at 

appropriatetimes,theindex ofthe next instruction to begenerated. Thegrammar is as follows: 
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Consider semantic action (1) for the production B -> B1|| M B2. If Bx is true, then B is 

alsotrue,sothejumpsonBi.truelistbecomepartofB.truelist.IfBiisfalse,however,wemustnexttestB2,so the 

target forthe jumps B>i .falselist must be the beginning of the code generated for B2 • 

ThistargetisobtainedusingthemarkernonterminalM.Thatnonterminalproduces,asasynthesizedattributeM.i

nstr, the index ofthenext instruction, just beforeB2 codestarts beinggenerated. 

Example 

Considerexpression 
 

 

 

 

 
AnannotatedparsetreeisshowninFig.6.44;attributes truelist,falselist, and instr arerepresented by 

their initial letters. The actions are performed during a depth-first traversal of the tree.Since all actions 

appear at the ends of right sides, they can be performed in conjunction with reductionsduring a bottom-

up parse. In response to the reduction of x <100 to B by production (5), the twoinstructions 
 

 

aregenerated.(startinstructionnumbersat100.) ThemarkernonterminalMin theproduction 
 

 
recordsthevalueofnextinstr,whichatthistimeis102.

 Thereductionofx>200toBbyproducti

on(5) generates the instructions 
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The marker nonterminal M records the current value of nextinstr, which is 

nowReducingx!=yinto Bby production (5)generates 

 

 

WenowreducebyB—>B1&&MB2.Thecorrespondingsemanticactioncallsbackpatch(B1.truelist,M.instr) 

to bind the true exit of B1 to the first instruction of B2. Since B1.truelistis {102} and M.instr is 104, this 

call to backpatch fills in 104 in instruction 102. The six instructionsgeneratedso far arethus as shown in 

Fig. 6.45(a). 

ThesemanticactionassociatedwiththefinalreductionbyB—>B1||MB2callsbackpatch({101},102)which 

leaves theinstructions as in Fig 

Theentireexpressionistrueifandonlyifthegotosofinstructions100or104arereached,andisfalseif and only if 

the gotos of instructions 103 or 105 are reached. These instructions will have their targetsfilledin laterin 

thecompilation, whenit is seenwhat mustbe donedepending on thetruth orfalsehood 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

oftheexpression.as 
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3 Flow-of-ControlStatements 

usebackpatchingto translateflow-of-control statementsin onepass. 
 

ThetranslationschemeinFig.6.46maintainslistsofjumpsthatarefilledinwhentheirtargets 

are found. 
 

 
Backpatch the jumps when B is true to the instruction Mi.instr; the latter is the beginning of 

thecode for Si. Similarly, we backpatch jumps when B is false to go to the beginning of the code for S 2 

.The list S.nextlist includes all jumps out of Si and S 2 , as well as the jump generated by N. 

(Variabletempis atemporary thatis used only for merginglists. 
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Semanticactions(8)and(9)handlesequencesofstatements.In 
 

theinstructionfollowingthecodeforL±inorderofexecutionisthebeginningofS.ThustheL1.nextlist list is 

backpatched to the beginning of the code for S, which is given by M.instr. In L —> S,L.nextlistis 

thesame as S.nextlist. 

Notethatnonewinstructionsaregeneratedanywhereinthesesemanticrules,exceptforrules(3)and (7). All 

other code is generated by the semantic actions associated with assignment-statements andexpressions. 

The flow of control causes the proper backpatching so that the assignments and 

booleanexpressionevaluations will connect properly. 
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